Final Syllabus for B.Tech (First year) (2023 Admission Batch)

All Branches

(To be approved by Academic Council and Board of Studies)

GIFT Autonomous College

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela) Recognised under section 2(f) of the UGC act, 1956 At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pincode: 752054

1st Year Course Structure

		F	irst Semester					:	Second Semester		
			Theory						Theory		
SI. No.	Category	Course Code	Course Title	WCH L-T-P	Credit	SI. No.	ry Course Code Course Title		Course Title	WCH L-T-P	Credit
1	BS	BTBS-T-BS-101	Mathematics I	4-0-0	3	1	BS	BTBS-T-BS-201	Mathematics II	4-0-0	3
2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2	2	BS BTBS-T-BS-102/ BTBS-T-BS-103 Elements of Engineering Physics / Applied Chemistry			4-0-0	2
3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical Engg./ Basic Electronics Engg.	3-0-0	2	3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical Engg/ Basic Electronics Engg./	3-0-0	2
4	ES	BTBS-T-ES-103	Basic Programming Skills	4-1-0	3	4	ES	BTBS-T-ES-203	3S-T-ES-203 Programming Using Data Structure		3
5	ES	BTBS-T-ES-104/ BTBS-T-ES-105	Basic Mechanical Engg/ Basic Civil Engineering	3-0-0	2	5	ES	BTBS-T-ES-104/ BTBS-T-ES-105	BTBS-T-ES-104/Basic Mechanical Engg/BTBS-T-ES-105Basic Civil Engineering		2
6	HS	BTBS-T-HS-101	English for Engineers-I	2-0-0	1	6	HS	BTBS-T-HS-201	English for Engineers-II	2-0-0	1
7	МС	BTBS-T-MC-101/ BTBS-T-MC-102	IT & IS /Constitution of India	2-0-0	0	7	МС	BTBS-T-MC-101/ BTBS-T-MC-102	IT & IS /Constitution of India	2-0-0	0
Total Hours/ Credit (Theory)			23	13	-			Total Hours/ Credit (Theory)	23	13	
			Practical								
1	1 BS BTBS-P-BS-102/ Elements of Engineering BTBS-P-BS-103 Physics Lab/ Applied				1				Practical		
2	ES	BTBS-P-ES-101/	Chemistry Lab Basic Electrical Engg. Lab/	0-0-2	1	1	BS	BTBS-P-BS-102/ BTBS-P-BS-103	Elements of Engineering Physics Lab/ Applied	0-0-2	1
-	10	BTBS-P-ES-102	Basic Electronics Engg. Lab	001	-	2	ES BTBS-P-ES-101/		Basic Electrical Engg. Lab/ Basic Electronics Engg. Lab	0-0-2	1
3	ES	BTBS-P-ES-103	Basic Programming Skill Lab	0-0-3	1.5	3	B1B5-P-E5-102		Programming Using Data	0-0-3	15
4	ES	S BTBS-P-ES-104/	104/ Basic Mechanical Engg lab/	0-0-2	1	0	10		Structure Lab	000	110
		B1B2-b-F2-102	Basic Civil Engineering lab			4	ES	BTBS-P-ES-104/	Basic Mechanical Engg lab/	0-0-2	1
5	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Engineering Graphics with AutoCAD /	0-0-3	1.5		_	BTBS-P-ES-105	Basic Civil Engineering lab		
			Workshop Practice-I			4	ES	BTBS-P-ES-104/	Engineering Graphics	0-0-3	1.5
6	HS	BTHS-P-HS-101	English for Engineers Lab-I	0-0-2	1			BTBS-P-ES-105	with AutoCAD / Workshop Practice-I		
7	PS	BTPS-P-PS-101	Project-1	0-0-2	1	5	HS	BTBS-P-HS-201	English for Engineers Lab-II	0-0-2	1
						6	PS	BTPS-P-PS-201	Project-2	0-0-2	1
	I		Total Hours/ Credit (Practical)	16	8	0	10	5		002	
1		Grand	Гotal Hours/ Credit (Practical)	39	21				Total Hours/ Credit (Practical)	16	8
								Gra	nd Total Hours/ Credit (Practical)	39	21

Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA are:

PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct Investigations of Complex Problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective

Page **3** of **66**

reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

L	Lecture
Т	Tutorial
Р	Laboratory / Practical / Sessional
WCH	Weekly Contact Hours
BS	Basic Sciences
HS	Humanities & Social Sciences (including Management)
ES	Engineering Sciences
PC	Professional Core
PE	Professional Elective
OE	Open Elective
MC	Mandatory Course
SC	Skill Course
PS	Project/Seminar/Internship

Part I 1st Year B. Tech. (Common to All Branches)

Page **6** of **66**

<u>Contents</u> First Year B.Tech

Curriculum Structure

B.Tech (1st Semester & II nd Semest

Page No
2
8
9-10
11-13
14-16
17-19
20-21
22-23
24-25
26-28
29-31
32-34
35-36
37-38
39-40
41-42
43-44
45-46
47-48
49-50
51-52
53-54
55-56
57-58
59-60
61
62-64
65-66

Evaluation process

Components	Marks	Frequency	Assigned To
Quiz Test	5	2	Concerned Faculty
Surprise Test	5	2	Concerned Faculty
Assignment	5	2	Concerned Faculty
Attendance	5	Closing of	To be retrieved from CMS
Attendance	5	Instruction	
		1 (Before	
Project	10	Closing of	Concerned Faculty
		Instruction)	
Mid-Semester Examination	20	1	Examination Cell
End-Semester Examination	100	1	Examination Cell
Total	150		·

1. Evaluation Process of Theory Subjects:

2. Evaluation Process of Practical Subjects:

Components	Marks	Frequency	Assigned To
Attendance	10	Closing of Instruction	To be retrieved from CMS
Daily Performance & Viva-voce	40	On the day of Experiment	Concerned Faculty (Upload in CMS in weekly basis)
Lab Record	20	On the day of Experiment	Concerned Faculty
End-Semester Lab Test	30	1	At the end of the semester as per the schedule published by Examination Cell
Total	100		·

3. Evaluation Process of Skill Courses:

Components Marks		Frequency	Assigned To			
End-Semester Examination	100	1	Examination Cell/ Concerned Faculty			
Total 10						
4. Evaluation Process of N	Evaluation Process of Mandatory Courses:					
Components	Marks	Frequency	Assigned To			
In-Semester Evaluation		1	Examination Cell/ Concerned Faculty			
Total 100						

Туре	Code	Mathematics - I	L-T-P	Credits	Marks
BS	BTBS-T-BS-111	Mathematics - 1	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of ordinary differential equations and applications, solution of system of linear equations using matrix, Eigen vectors & Eigen values of matrices with applications.
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
	Solution of first order differential equations, Linear equation, Bernoulli's equation.	
Module-1	Second order differential equations with constant coefficients, Euler-Cauchy equation.	12 Hours
	Experiential learning-Applications of differential equations in 2D using MATLAB.	
	Introduction to vector space, sub space, linearly independent and linearly dependent	
Module-2	vectors, solution of system of linear equations, Gauss elimination, and Gauss-Jordan	13 Hours
	methods, Determinant, Inverse of a matrix, Rank of a matrix. Basics of linear	
	transformation, Eigen values and Eigen vectors.	
	Experiential learning- Blending system of linear equations in Gauss elimination	
	method, Computation of Eigen values and Eigen vectors using MATLAB.	
	Vector Differential Calculus: Vector and Scalar functions and Fields, Derivatives,	
Module-3	Curves, Tangents and Arc length, Gradient, Divergence and Curl with applications.	8 Hours
	Average, Problems on Ages, Percentage, Profit and Loss, Ratio and Proportion, Time	
Module-4	and Work, Time and Distance, Simple and Compound Interest.	12 Hours
	Total	45 Hours

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, Quantitative Aptitude For Competitive Examinations, S. Chand publication.

Reference Books:

R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.

R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.

R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.

R4. A. Sharma, Quantitative Aptitude, Mc Graw Hill Education Pvt. Ltd

R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley Publication

Online Resources:

- 1. https://nptel.ac.in/courses/111106100
- 2. https://nptel.ac.in/courses/111105121
- 3. https://nptel.ac.in/courses/111104137
- 4. https://nptel.ac.in/courses/111107108
- 5. https://nptel.ac.in/courses/111106051
- 6. https://nptel.ac.in/courses/111105134

Course Outcomes: At the end of this course, the students will be able to:

CO1	Find the general solution of first and second order ordinary differential equations and use the general solution to find the specific solution for given initial value problems.						
CO2	Solve and demonstrate various physical models through second order differential equations.						
CO3	Use the understanding of matrix algebra to solve systems of linear equations, harmonics problems, population models etc. arising in various engineering fields.						
CO4	Demonstrate knowledge and applications of Eigen value problems related to engineering disciplines.						
CO5	Application of mathematics for engineers through MATLAB.						
CO6	Know the basic concepts of quantitative aptitude to meet real life requirements.						

Туре	Code			L-T-P	Credits	Marks			
BS	BTBS-T-BS-	102	Elements of Engineering Physics	4-0-0	2	150			
Objectives		1. Physic 2. the stu	 To expose students to the fundamental principles and laws of mechanics in Physics to understand the types of motion. To analyze the concepts of mechanics, oscillations, waves and optics to prepare the students for advanced level courses. 						
		3. numei 4.	 To demonstrate the ability to identify and apply the appropriate analytic, numerical, and mathematical reasoning, to situations of the physical world. To adaptability to new developments in science and technology. 						
Pre-Re	equisites	Class	12 th level Physics course						
Teachi	ng Pedagogy	Regu plann	lar classroom lectures with use of ICT and to be interactive with focus on problem	as and whe m solving a	n required, ctivities.	sessions are			

Module-#	Topics	Hours
	Oscillation, waves and Mechanical Properties	
Module-1	Simple, damped and forced oscillations, resonance, coupled oscillations.	12 Hours
	Wave and wave equation, Superposition of waves.	
	Interference, Young's double slit experiment, Newton's rings, Diffraction,	
	Fraunhofer diffraction by single slit, Diffraction Grating, Polarization, Malus'	
	Law, Brewster's Law.	
	Mechanical Properties of Matter Stress, strain, Hooke's law, elastic constants	
	and their relations, stress-strain diagrams	
	Experiential learning:- Different Types of Oscillator circuits	
	(Using inductor and capacitor frequency will be determined)	
Module-2	Electromagnetism and Concept of Quantum mechanics	
	Divergence, Curl and Gradient, Line, Surface and volume integral, Gauss	10 Hours
	divergence theorem, Stokes theorem (Only Statements, no proof), Gauss's law,	
	Ampere's law and Faraday's law of electromagnetic induction, Maxwell's	
	equations in integral and differential form.	
	Black body radiation, Planck's law, photo electric effect (concept and equation),	
	Matter waves, de Broglie hypothesis, Heisenberg's Uncertainty Principle and its	
	application, Schrodinger's wave equation – Time independent and Time	
	dependent equations, Free particle, Particle in a one dimensional rigid box.	
	Experiential learning:-Soft image using quantum Machine learning Algorithm	
L		

Module-3	Engineering Materials	10 Hours
	Semiconducting Material: Defects in solids (Elementary idea), Concept of	
	energy bands in solids, carrier concentration and conductivity in semiconductors	
	with temperature dependence, construction and working of PN junction diode.	
	Dielectric materials, Dielectric Polarization, Dielectric Breakdown, Dielectric	
	constant and loss, Electromagnetic wave in dielectric medium.	
	Superconducting materials: Superconductivity, Critical parameters, Meissner	
	effect, Type I & Type II superconductors, BCS theory, applications of super	
	conducting materials.	
	Nano material: Classifications, Quantum confinement, surface to volume ratio,	
	Graphene and its structure, Application.	
	Experiential learning: Magnetic energy storage devices, Construction of battery	
	and diode.	
	Quantum Statistics and Optoelectronic devices	
Module-4	Statistical Mechanics: Statistical distributions: Maxwell-Boltzmann, Molecular	12 Hours
	Energies in an ideal gas, Bose-Einstein and Fermi-Dirac statistics.	
	Laser: Spontaneous and stimulated emission, Einstein's coefficients, Population	
	inversion, Light amplification, Basic laser action, Types of laser, Ruby and He-	
	Ne lasers, applications.	
	Fiber Optics: Optical fiber and its principle, acceptance angle, numerical	
	aperture for step and graded index fibers, attenuation mechanism in optical	
	fibers, applications of optical fibers.	
	Experiential learning: Optical fiber communication, LED	
	Design different types of sensors using optical fiber.	

Text Books:

T1. Principles of Engineering Physics-Vol. I and II by M. Khan & S. Panigrahi, Cambridge university Press

T2. Physics for Engineering degree students, B. B Swain & P. K Jena.

Reference Books:

- R1. Electronic Devices and Circuits Millman, Halkias and Jit, Tata McGraw Hill
- R2. Concepts of Modern Physics : A Beiser, S Mahajan, S. Raichoudhury
- R3. Optics: A. K. Ghatak
- R4. Introduction to Solid State Physics: S. O. Pillai
- R5. Properties of matter: D. S. Mathur
- R6. Heat and Thermodynamics: N Subramaniam

Online Resources:

- 1. <u>https://nptel.ac.in/courses/122106027</u>
- 2. <u>https://nptel.ac.in/courses/115105121</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc22_ph06/preview</u>
- 4. <u>https://nptel.ac.in/courses/115105097</u>
- 5. <u>https://nptel.ac.in/courses/108106161</u>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concepts of waves, oscillation and its significance.
CO2	Acquire skills to apply formulas of optics and wave physics.
CO3	Gain Acquire Knowledge of basic concepts of electric and magnetic fields.
CO4	Develop the concept of different engineering material and their applications.
CO5	Understand the basic knowledge of thermodynamic and use them to solve practical problems.
CO6	Develop a comprehension of the current basis of broad knowledge in Modern physics.

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-103	Applied Chemistry	4-0-0	2	150

Objectives	The objective of this course is to make students learn about basic concepts and application of Chemistry from Industrial, Pharmaceutical, research, agriculture and life science point of view.
Pre-Requisites	A fundamental knowledge of Quantum, Inorganic chemistry, along with basics of Periodic table, properties of metal are to be clear.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Module-1	Quantum Mechanics and its application : Failure of classical mechanics and introduction to quantum mechanics, Photoelectric effect, Postulates of Quantum mechanics, Schrodinger's wave equation (Derivation not required), Particle in One dimensional box, Significance of eigen value and eigen function. Zero point energy.	
	Phase rule and its application : Definition of phase, component and degree of freedom ,one component system, Water, Sulphur system, Curves and triple points, meta stable triple point, Two component alloy systems: Bi-Cd, eutectic point	
	Experiential learning:- Preparation of alloys, Isolation of Salts from Mixtures (By adjusting Temperature and Composition)	
Module-2	 Electro Chemistry and its application: Electro chemical cells, Dry cell, Alkaline battery, Ni-Cd battery, Li-ion Battery, Pb-acid storage cell Fuel Cells: Definition, Different types of fuel cell, Hydrogen blue fuel cell, FCEVs 	13 Hours
	Corrosion : Theory and mechanism of corrosion, Types, differential aeration corrosion, water line corrosion, Pitting, stress, SCC, galvanic corrosion, Caustic embrittlement, Factors affecting corrosion, Corrosion Control, corrosion inhibitors: Cathodic protection, Metal coatings.	
	Experiential learning:- Preparation of dry cell	
	(Using metal ,carbon rod and insulating Separator)	

Total		45 Hours
	Experiential learning:- CNTs are synthesized by thermal CVD method using hydrocarbon gas as carbon source (Using Quartz tube and RF heater)	
Module-4	Nano materials : Introduction, Classification, characteristics, 0D,1D, 2D Nanomaterials, Synthesis: Top Down & Bottom Up approach, Application to Pharmaceutical and Research .	8 Hours
	Experiential learning:- Preparation of Hexamethyelene diamine Adipic Acid(Nylon 66) Polymer. (Using Adipoyl Chloride)	
	Polymer : Degree of polymerization, Thermosetting and thermoplastic polymer with examples: Polethene, PVC, Nylon-6, Teflon and their applications, Rubber: Natural rubber, Vulcanized rubber.	
Module-3	Fuel : Classification, calorific value, refining of crude oil, cracking, fuel for I/C engine, knocking, anti-knocking, Octane rating. Diesel engine fuels, Cetane rating, Combustion calculations. Gaseous fuel: LPG, CNG, Biogas fuel, Alternate Fuels, carbon foot print, carbon trading	12 Hours

Text Books:

T1.Theory & Practical's of Engineering Chemistry, By Shashi Chawla, Publisher: Dhanpati Rai & CO.(Pvt.) Ltd

T2. Engineering Chemistry Vol-I & II, Author: Jain & Jain, Publisher: Dhanpati Rai Publishing Company.

T3. Engineering Chemistry, Author: Prasant Rath, 2015, Cenage Learning India Pvt, Ltd

T4. Textbook on Engineering chemistry. Author: Achyutananda acharya & Biswit Samantaray, publisher: Pearson

Reference Books:

R1. Theory & practical's of engineering chemistry, by Shashi Chawla, publisher: Dhanpati Rai & CO.(Pvt.) Ltd

R2. Engineering chemistry vol-i & II, author: Jain & Jain, publisher: Dhanpati Rai publishing company.

R3. A textbook of engineering chemistry, author: Dr. Rajshree Khare publisher: S.K. Kataria & sons.

R4. Textbook of nanoscience and nanotechnology. Mcgraw Hill Education (India) Pvt. Ltd., 2012.

R5. Nanostructures & Nanomaterials: synthesis, properties and applications- g. Cao and Y. Wang, world scientific Pvt.

Ltd.; 2nd edition

Online Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cells
- 2. https://www.britannica.com/science/polymer
- $3.\ https://www.niehs.nih.gov/health/topics/agents/sya-nano/index.cfm$
- $4.\ https://afdc.energy.gov/vehicles/fuel_cell.html$
- 5. https://www.researchgate.net/publication/258761372

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe graphs of one and two component system (curves) and their characteristics.
CO2	Solve quantum energy related problem and determine the quantized energy of different energy levels.
CO3	Explain the methodology of corrosion occurrence in different cases and its prevention to optimum level.
CO4	Explore the concepts and methods of blending of fuels with better Cetane and Octane number.
CO5	Use the concept of Polymer Synthesis, Nano material synthesis methodologies and types of nanomaterial.

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-101	Basic Electrical Engineering	3-0-0	2	150

Objectives	To expose to the field of electrical &electronics engineering, and to acquire the
	fundamental knowledge in the field.
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Module-1	Introduction to Electrical power system: An overview of Electrical Engineering, Sources of energy, steam, hydro and nuclear power generation, Renewable source of Power generation and general structure of electrical Transmission, Distribution, and Utilization & Conservations. DC Circuits: Study of Electrical Elements (R, L, C). Ohm's Law. Series & Parallel combination. KCL, KVL, Nodal & Mesh analysis. Star Delta Conversion. Superposition theorem, Thevevnin's theorem, Experiential learning:- Power generating station (Construction of Small hydro plant, Biomass plant) LED light using solar energy.	10 Hours
Module-2	AC fundamentals: Sinusoidal Wave form, Peak, RMS, Average value. Concept of Real Power, Reactive Power, Apparent Power &Power factor. Analysis of 1- phases AC circuit. Introduction to 3- phase system. Line & Phase quantity in star and delta connection, Analysis of 3- phases balanced AC circuit. Concept of resonance in series and parallel R-L-C circuits. Magnetic circuits: Electro magnetism, simple magnetic circuit, magnetic material, B-H curve. Experiential learning:- Design of Magnetic Circuits to learn self induction & Mutual inductance.	12Hours
Module-3	 Electrical Machines: Construction, working principle & Application of DC generator, DC Motor, 3 phase & single phase induction motor, Alternator & Special Motors (Stepper & BLDC) Experiential learning:- Single phase transformer construction and working: Definition of Transformer, construction of Winding of shell type Transformer. 	8 Hours

Total	·	40 Hours
	Experiential learning:- Making of LED bulb and Determination of Ratings of Different types of Lamps. (Tungsten, Mucury Vapour, CFL & LED)	
	Different Illumination, Batteries and their applications.	
Module-4	 Design of Electric Circuit using Circuit Breaker & Fuse for domestic house wiring. Electrical Safety: Safety Procedure for working on electrical mains & Apparatus, Electrical hazard, its preventions & Protections, Fire preventions & protection for electrical installations. First aid in electrical Injuries. Artificial respiration & chest compression for accidents victims. Importance of IE rules and Electrical License rules. 	10 Hours
	Experiential learning:-	
	Type of earthing & Different types of Domestic Wiring.	
	Electrical Installations & wiring: Layout of LT switchgear, Switch fuse unit (SFU), MCB, ELCB, MCCB.	

Text Books:

T1.D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.

T2. Principles of Electrical Safety, Peter E. Sutherland, Wiley-IEEE Press.

Reference Books:

R1."Basic Electrical Engineering" by Mittle, V and Arvind Mittle, Tata McGraw Hil.

R2.E. Hughes, "Electrical and Electronics Technology", Pearson.

R3. Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.

R4."Basic Electrical Engineering" by C L Wadhwa, New Age pub.

R5.D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.

R6.Electrical Safety Handbook, 4th Edition Hardcover by John Cadick Mary Capelli-Schellpfeffer Dennis

Neitzel Al Winfield

Online Resources:

- 1. <u>https://onlinecourses.nptel.ac.in/noc23_ee62</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc23_ee17</u>
- 3. https://onlinecourses.nptel.ac.in/noc23_ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23_ee15
- 6. <u>https://onlinecourses.nptel.ac.in/noc22_ee90</u>
- 7. <u>https://onlinecourses.nptel.ac.in/noc22_ee93</u>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Introduce fundamentals idea & techniques about electrical engineering & to provide knowledge about DC, AC.
CO2	Analyses of different problems of electrical circuit using electrical theorems.
CO3	Understanding of magnetic circuit and solving the basic problems.
CO4	Impart conceptual analysis of electrical machineries & to familiarize the students with electrical safety equipment & domestic wiring.
CO5	Understand and implementation the earthing and wiring system.
CO6	Inculcate sound understanding of illumination scheme.

Page **19** of **66**

Туре	Code	Basic Electronics Engineering		Credits	Marks
ES	BTBS-T-ES-102	Dasic Electronics Engineering	3-0-0	2	100

Objectives	To expose to the field of electronics engineering, and to acquire the fundamental knowledge in the field.
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Scheme	Regular classroom lectures with use of ICT as and when required,
	sessions are planned to be interactive with focus on problem solving

Evaluat	ion Se	cheme
---------	--------	-------

Teacher's Assessment			Written A	Assessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotai

Module-#	Topics	Hours
Module-1	Introduction to Electronics and Communication Engineering: Basic Electronics components (active, passive),Signal, Spectrum, Frequency Band and Industrial application(VLSI, Microwave, RF, Telecommunication, Fiber Optics, RADAR, Signal Processing). Basic Communication Block Diagram and concept of Transmitter, Receiver and Channel. Diodes: Overview of Semiconductors. Working principle and characteristics of PN junction. Experiential Learning : Diode applications (half-wave and full- wave rectifier, clipper, clamper and zener /Avalanche Breakdown).	10 Hours
Module-2	Bipolar Junction Transistor :Construction, Operation of Bipolar Junction Transistor and Experiential Learning : Transistor Biasing : Fixed Bias, Voltage divider bias, Transistor as a switch, CB, CE, CC (Relationship between α , β , γ) circuit configuration Input-output characteristics, as an Amplifier . Op-Amp:The Operational Amplifier (Op-Amp): The Ideal Op-Amp Characteristics, Virtual ground concept, Inverting and non-inverting	10 Hours
	configurations, Application of Op-Amp (Summing amplifier, Integrator, Differentiator. Unit Gain Amplifier)	
Module-3	Basics of Digital Electronics : Number System, Inter conversion of Number Systems, Binary Arithmetic, Boolean Algebra, Simplification of Boolean Expressions, Demorgan's Theorem, SOP, POS, Digital logic Gates (AND, OR, NOT, NAND, NOR, EXOR, EX-NOR); Realization of Basic logic gates using universal gates, Combinational Circuits-Half-Adder, Full-Adder, Half- Subtractor, Full-Subtractor. Basic concept of Sequential Circuits, latch and flip-	12 Hours
		 Page 20 of 66

Module-4	Introduction to Microprocessors and Microcontrollers: Basic block diagram: input, output, ALU, CU, Registers ,Difference between microprocessor and microcontroller. Experiential Learning : Introduction to chip designing and manufacturing. Introduction to Sensors and their Applications : Introduction to different types of Sensors: Temperature sensor, Moisture Sensor, Rain Sensor, LDR, IR, Smoke Sensor	8 Hours
	Introduction to Microprocessors and Microcontrollers: Basic block diagram:	

Text Books:

T1. Electronic Devices and Circuit Theory (Ninth Edition), Robert L. Boylested and Louis Nashelsky, Pearson Education, 482 FIE, Patparganj, Delhi – 110 092.

T2.Digital Design, 5th Edition M. Morris Mano and Michael D Ciletti Pearson

T3.B. Ram, Fundamentals of Microprocessors and Microcomputers, Dhanpat Rai Publications **Reference Books**:

R1 Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.

R2.E. Hughes, "Electrical and Electronics Technology", Pearson.

R3.Microelectronic Circuits, 7th Edition Adel S Sedra and Kenneth C Smith Oxford University Press

R4.Fundamentals of Digital Circuits, 4th Edition A Anand Kumar PHI

R5. Integrated Electronics, 2nd Edition Jacob Millman and Christos Halkias Tata McGraw Hills

R6. A course in Electrical and Electronic Measurements and Instrumentation Author: AK Sawhney Publisher : Dhanpat Rai & Co. (P) Limited

Online Resources:

- 1. <u>https://onlinecourses.nptel.ac.in/noc23_ee62</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc23_ee17</u>
- 3. https://onlinecourses.nptel.ac.in/noc23_ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23_ee15
- 6. <u>https://onlinecourses.nptel.ac.in/noc22_ee90</u>
- 7. https://onlinecourses.nptel.ac.in/noc22_ee93

CO1	To introduce fundamentals idea & techniques about electrical engineering & to provide
CO^{2}	To impart conceptual analysis of electrical machineries & to familiarize the students with
002	electrical safety equipment & domestic wiring.
CO3	To inculcate sound understanding of illumination scheme.
CO4	To give knowledge about basic electronic components , industrial applications and
CO5	To understand basic operation and applications of Diode, BJT and Op-Amp.
CO6	To Study basic digital concepts, sensors, microprocessors and microcontrollers

Page **21** of **66**

Туре	Code		L-T-P	Credits	Marks
ES	BTES-T-ES-103	Basic Programming Skills	4-1-0	3	150

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours
Module-1	Algorithm, Representation of Algorithm: Flowchart/Pseudo-code with examples. From algorithms to programs; C Program source code, C Program structure, basic syntax, data types, variables, constants, storage class, syntax and logical errors in compilation, object and executable code, Arithmetic expressions, operators and precedence.	10 Hours
Module-2	Decision making: Conditional Branching, if statement, if else statement, nested if else statement, switch, nested switch statements, Iteration and loops, break, continue, Decision making Application in solving real life problems.	8 Hours
Module-3	Functions, Parameter passing in functions, call by value, idea of call by reference, recursion with examples of Finding Factorial, Fibonacci series, local and global variables, static variables. Experiential Learning: Arduino based Programming: Overview of the Arduino UNO Components, Analog and Digital Read, Controlling output	8 Hours
Module-4	Arrays: Arrays (1-D, 2-D), initialization, Accessing Array Elements, Matrix applications, passing arrays to functions, Character arrays and Strings, Pointers, Pointer arithmetic, dynamic memory allocation, pointer to array and array of pointers, Linear Search, Bubble Sort	8 Hours
Module-5	Structures, Array of structures, union, structure vs union, passing structure to function, File handling: ASCII and binary Files.	6 Hours
Total		40 Hours

Text Books:

1. E. Balagurusamy, Programming in ANSI C, 8th Edition, Tata McGraw Hill, 2019

2. Herbert Schild, C: The Complete Reference, Tata McGraw Hill

Reference Books:

1. A.K.Rath and A. K. Jagadev, "Data Structures and Program Design using C", 2nd Edition, Scitech Publications, 2011

- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication Pvt. Ltd
- 3. Rajaraman, V., Computer Programming in C, PHI Publications
- 4. Simon Monk, Programming Arduino: Getting Started with Sketches, 2nd Edition, McGraw Hill, 2016
- 5. Yashavant Kanetkar, Let Us C, 17th Edition, BPB Publications New Delhi, 2019

Course Outcomes: At the end of this course, the students will be able to:

CO1	To formulate simple algorithms for problem solving and translate the algorithms to programs.
CO2	To test and execute the programs and correct syntax and logical errors.
CO3	To implement different conditional branching and loops for problem solving.
CO4	To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
CO5	To use arrays, pointers and structures to formulate algorithms and programs.
CO6	To apply programming to solve searching and sorting problems.

			-		
Туре	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-104	Basic Mechanical Engineering	3-0-0	2	150

Objectives	To expose to the field of Mechanical Engineering, and to acquire the fundamental	
	knowledge in the said field.	
Pre-Requisites	Knowledge of Physics, Mathematics and computer programming in Secondary	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are	
	planned to be interactive with focus on group task, project planning and video	

Module-#	Topics	Hours
Module-1	Introduction to Engineering Materials and Mechanical Measurement: Engineering Materials: Classification of engineering material, Properties- Physical, Chemical & Mechanical, Composition of Cast iron and Carbon steels, Alloy steels their applications, Composites, Plastics and ceramics. Concepts on Metallurgy. Smart materials. Mechanical Measurement: Concept of measurements, errors in measurement, measurement of Temperature, Pressure, Velocity, and Flow. (Working principle only.) Experiential learning 1. Preparation of Composite material	8 Hours
Module-2	 Introduction to Manufacturing Processes History of industrial revolution, introduction to Casting: Sand casting, Die casting, investment casting; centrifugal casting; Metal joining: Soldering, Brazing and Welding, Metal forming: bulk metal forming (rolling, forging, extrusion, wire/bar drawing), sheet metal forming(bending, deep drawing, sheering), Additive Manufacturing: Introduction to 3d printing: working principle,physics of process; process modelling: computer aided process planning for 3d printing; classification: Extrusion(Detail study of Fused Deposited Modelling with video demonstration of working principle of inhouse 3d printer), granular,laminated, light polymerized ; Related technologies. Subtractive Manufacturing (working principle, details of machine tools and application only): Introduction, Conventional Machining Processes: cutting,turning, milling, drilling, grinding, and boring; Nonconventional Machining Processes: CNC Machining, EDM, ECM,Laser Cutting, Wood router(Detail study and video demonstration of working principle),water jetting. Experiential learning Wood carving of Art CAM using wood router Small project using Metal joining process(Similar and Dis-similar) Casting of different components 	12 Hours

Page **24** of **66**

Module-4	Introduction power transmission: Power transmission devices: Belt, Rope, Gear & Gear drives. Coupling, clutch, brakes. (Working principle only), Mechanical Advantage, Velocity ratio. Experiential learning 6.Belt drive, muff coupling	8 Hours
	 Kenigerators and Alf- Conditioners (Brief description of different components with Schematic diagram only.) Fluid Properties and their Applications: Fluid properties, Pascal's Law its application, Archimedes Principle, Bernoulli's theorem. Hydraulic machines: turbines, pumps, their types. CO4: Get knowledge of fluid properties and explain working principle of Hydraulic Machines Experiential learning 5.Hydraulic system design and manufacturing using Pascal's Law 	13 Hours
Module-3	Fundamentals of Thermodynamics and Fluid Mechanics: Basics of Thermodynamics, Steam formation& its properties. Evaporation and Condensation, Cryogenics: Dry ice Vs Liquid Nitrogen. Aircraft engines and its classifications, Fuels, Rockets. Application of Thermodynamics : Steam power plant, I.C Engine, Refrigerenters and Air Conditioners (Priof description of different components	12 Hours

Text Books:

T1. Basic Mechanical Engineering by Pravin Kumar, Pearson.

- T2. Text book of Elements of Mechanical Engineering, S T Murthy, Universities press.
- T3. Cengal, Y., Boles, "Thermodynamics", Mc-Graw Hill, 2001.

ReferenceBooks:

- R1. Basic Mechanical Engineering by Basant Agrawal, C M Agrawal, Willey .
- R2. Elements of Mechanical Engineering by J K Kittur and G D Gokak, Willey.
- R3. Engineering Thermodynamics by P. Chattopadhaya, Oxford University Press.
- R4. Basic Mechanical Engineering by .D. Mishra, P.K Parida, S.S.Sahoo, India Tech Publishing.
- R5. Engineering Materials, S C Rangwala, Charotar Publishing House .

Course Outcome

At the end of the course the student will be able to:

CO1	Discuss the Properties of Common Engineering Materials and measuring equipment
CO2	Describe the conventional and advanced Manufacturing process.
CO3	Explain the Working Principle of IC engines and Refrigeration and Air conditioning.
CO4	Get knowledge of fluid properties and explain working principle of Hydraulic Machines
CO5	Explain different power transmission systems.

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-105	Basic Civil Engineering	3-0-0	2	150

Objectives	To expose to the field of Civil Engineering, and to acquire the fundamental knowledge in the said field.	
Pre-Requisites	Knowledge of Physics, Mathematics and computer programming in Secondary Education	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on group task, project planning and video demonstration.	

Module-#	Topics	Hours
Module-I	Introduction to Construction materials Basics of Civil Engineering & Broad disciplines of Civil Engineering Building components and Materials –Cement, Concrete, Steel,. Concept of smart building, Tiles for flooring, Different Types of Doors and windows, Paints. New and smart Materials – flyash, new-age concrete, recycling of materials.	10 Hours
 Field Survey : Scale,plan, map, principles of survey, Linear measurements, Ranging, C Survey, Bearing of a line, Levelling, Introduction to Modern Instruments (EDM and Total Station), GIS and GPS (Introduction only). Module-II Transportation Railway, Airport, Types of Bridges, concept of Tunn Metro rail (underground and overhead engineering - Different metransport, classification of road, , Introduction to), Basics of Port and Breakwater – Concept of inland waterways. 		10 Hours
Module-III	Fundamentals of Soil Mechanics, Hydrology Fundamentals of soil classification, properties, foundation (deep and shallow) and types. Fundamentals of Water Resource engineering- sources and Introduction to hydraulic structures like canals, siphons, weirs, dams etc.	10Hours

Module-IV Module-IV Module-IV Module-IV Module-IV Module-IV Module-IV Module-IV Module-IV Module-IV Solenoi Technoi system, fixtures Waste V Seweraş water ti system,	 supply (Experiential Learning) ction, sources of water, advantages and disadvantages of water supply, apply system and its components. of flow , Pumps- its types, centrifugal pump its principle, components imitations. Pressure Regulator, Working of Pressure Regulator : ction, Types of sensor, uses and use of relay in tanks. d valve- d valve types, Solenoid valves working principle, Advanced plumbing ogies, Plumbing in Building, Plumbing system, Purpose of plumbing Plumbing safety tools, Plumbing tools, Safety during work, Fitting and in domestic building, Plumbing business tools, Valves, Types of joints Water Treatment ge, Characteristics of sewerage, effect of sewerage on ecosystem, waste eatment, Importance of waste water, its treatment process. Sewerage types of sewerage system 	12 Hours
Total		42 Hours

TextBooks:

- T1. Basic Civil Engineering, S.Gopi, Pearson.
- T2. Basics of Civil Engineering, M.S. Palanichamy, McGraw Hill.

ReferenceBooks:

- R1. Surveying Vol -1, RAgor, Khanna Publisher.
- R2. Water supply ana Waste water engineering, S.K. Garg.
- R3. Introduction to Bridge Engineering, D. Jhonson Victor.
- R4. Engineering Materials, S C Rangwala, Charotar Publishing House.

Course Outcomes: At the end of this course, the students will be able to:

CO 1	Identify the different properties of building materials
CO 2	Understanding the different modes of transportation
CO 3	Study of engineering properties of soil
CO 4	Analyze of water supply system by sensors and solenoids
CO 5	Evaluating different types of pumps
CO 6	Explore the uses of different instruments used in civil engineering work

Experiential Learning :

- 1. Transparent centrifugal pump.
- 2. Aqueduct, Syphon aqueduct, Super passage, canal syphon, level crossing
- 3. Practical working model of port

- Piping connection.
 Piping network Connection
 Solenoid Valve
- 7. Study of different water sensors.
- 8. Hydraulic bridge
 9. Fly-ash Bricks.
- 10. New age concrete.- ferroconcrete, roller compacted concrete, FRC

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-T-HS-111	English for Engineers –1	2-0-0	1	100

	1. To develop the understanding of communication in different context.
Objectives	2.To identify the basics of professional Writing
	3. To acquire basic proficiency in English including reading and listening
	comprehension, writing and speaking skills.
Pre-Requisites	NONE
Teaching	
Pedagogy	Regular classroom lectures with use of the interaction, experiential, activity oriented.

Module-#	Topics	Hours
Module-#	Topics Introduction to Communication 1. Process and Factors of Communication 1.1. History & Significance of Communication 1.2. Communication loop 1.3. Factors Responsible (Sender, Receiver, Channel, Code, Feedback etc.) 2. Verbal and Non-verbal communication 2.1. Verbal Communication 2.3. Non-Verbal Communication (Body language, Paralanguage) 3. Barriers to Communication 3.1. Barriers and Filters 3.2 Types of Barriers (Physical Psychological Cultural Barrier etc.)	Hours 06 hours 3+2+1 +1(EL) =7 hour
	 3.1. Barriers and Finers 3.2. Types of Barriers (Physical, Psychological, , Cultural Barrier etc. 3.3. Tips to Overcome Barriers <i>Experiential Learning: Non-verbal communication</i>	
	Experiential Learning: Non-verbal communication	

	Professional Writing	
Module-2	 Letters &E-mail writing Block format, 	2+3+3 08 Hours
Module-3	Literature Appreciation Name of the Lessons: 1.A.P.J Abdul Kalam from Wings of Fire, A.P.J Abdul Kalam with Arun Tiwari 2. "Spoken English & Broken English" by Bernard Shaw 3. Life Doesn't Frighten Me Poem by Maya Angelou 4. On Superstitions by A.G.Gardiner	8 Hours

Reference Books:

R1. An Introduction to Professional English and Soft Skills - Das et al.- Foundation Books

- R2. Understanding Human Communication by Ronald B. Adler
- R3. Technical Communication, Fourth Edition-Meenakshi Raman & Sangeeta Sharma
- R4. The Definitive Book of Body Language by Allan Pease
- R5. Silent messages by Albert Mehrabian
- R6. Advanced English Grammar by Martin Hewing
- R7. English Grammar in use- Raymond Murphy

Online Resources:

www.britishcouncil.in http://nptel.ac.in http://eltai.in

Page **30** of **66**

Course Outcomes:	At the end of this cours	se, the students will be able to:
-------------------------	--------------------------	-----------------------------------

CO1	Learn the fundamentals of communication
CO2	Understand the basic professional writing
CO3	Evaluate Literary convention

Туре	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-101	Systems (IT & IS)	2-0-0	0	100

Objectives	To expose to the fundamental usage of Computer.
Pre-Requisites	Basic knowledge of English in Secondary Education
Teaching Scheme	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life activities.

Module	Course to be Covered	Hours
Module 1	Introduction Windows OS, OS Commands and operations, Introduction to MS Office MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles. Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols.	5 Hours
Module 2	MS-WORD: Mailing tab : Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus. MS-EXCEL: Create workbook, Home tab, Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	5 Hours
Module 3	MS-EXCEL: Page Layout tab : Margin, Orientation, Paper size, Print area, Background Formulas tab : Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if) MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	5 Hours
Module 4	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab : Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound. Internet Technology : MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	5 Hours
Module 5	GRAMMERLY: Creating and uploading documents, Editing text Using GrammarlyGO, Formatting text, Checking your document for plagiarism. ChatGPT : Introduction, ChatGPT in general life, Uses and Applications of ChatGPT: Blog Topics and Keyword Research, Assist in Generating Copy for a Website	4 Hours

Page **32** of **66**

Proofreading and Editing, Creating WordPress Plugins, Writing and Debugging Code

TOTAL

24 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	To give basic fundamental concept about computer system.
CO2	To get familiar with MS Windows OS.
CO3	To get hands on expertise in MS Word.
CO4	Able to solve mathematical problems systematically using MS excel.
CO5	Able to design professional presentation using MS PowerPoint.
CO6	Able to manage the information in computer system using internet technology.

EXPERIMENTS:

Experiment No.	Course to be Covered	Hours
Experiment-1	Introduction Windows OS, OS Commands and operations, Introduction to MS Office	2 Hours
Experiment-2	MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles.	2 Hours
Experiment-3	MS-WORD: Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols.	2 Hours
Experiment-4	MS-WORD: Mailing tab : Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus.	2 Hours
Experiment-5	MS-EXCEL: Create workbook, Home tab, Insert tab Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	2 Hours
Experiment-6	MS-EXCEL: Page Layout tab : Margin, Orientation, Paper size, Print area, Background	2 Hours
Experiment-7	MS-EXCEL: Formulas tab : Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if)	2 Hours
Experiment-8	MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	2 Hours
Experiment-9	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab : Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound.	2 Hours
Experiment-10	Internet Technology : MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	2 Hours

Experiment-11	GRAMMERLY: Creating and uploading documents, Editing text Using GrammarlyGO, Formatting text, Checking your document for plagiarism.	2 Hours
Experiment-12	ChatGPT : Introduction, ChatGPT in general life, Uses and Applications of ChatGPT, Blog Topics and Keyword Research, Assist in Generating Copy for a Website Proofreading and Editing, Creating WordPress Plugins, Writing and Debugging Code	2 Hours
	TOTAL	24 Hours

Reading Material (s)

- 1. IT & IS Lab Manual, Department of CSE, GIFT, Bhubaneswar
- 2. Microsoft Office 2010 Introductory BY Gary B. Shelly, Misty E. Vermaat.

Туре	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC	02 Constitution of India	2-0-0	0	100
Objectives		he objective of this subject is to provide un adian Constitution and various organs creat unctions. The course acquaints students with cructures and institutions, and their actual w	derstanding of ed by the const h the constitut orking overt im	the basic co itution inclu ional desig e.	oncepts of iding their n of state
Pre-Re	equisites	asic knowledge of Indian history, overall ide	a on India's po	litical system	l.
Teachii	ng Pedagogy	egular classroom lectures with use of ICT as a lanned to be interactive.	and when requir	ed and each	session is

Evaluation Scheme

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Historical perspective of the constitution of India. Preamble of Indian constitution, Salient features of Indian constitution, Fundamental rights, Fundamental Duties and its legal status, Directive principles of state policy-its importance and Implementation.	8 Hours
Module-2	Federal structure and distribution of legislative and financial powers between the Union and the States, The Union legislature - The Parliament - The Lok Sabha and the Rajya Sabha, Composition, powers and functions, Union executive, President of India (with powers and functions), Vice- President, The Council of Ministers and the Prime Minister - Powers and functions.	6 Hours
Module-3	State Government, The State Legislature - composition, powers and functions, State executive, Governor (with powers and functions).	5 Hours
Module-4	Amendment of the Constitutional Powers and Procedure, Emergency Provisions: National Emergency, President Rule, Financial Emergency. Scheme of the Fundamental Right to Equality Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right to Life and Personal Liberty under Article 21. Local Self Government - Constitutional Scheme in India.	5 Hours

Module-5	The Indian Judicial System - the Supreme Court and the High Court's composition, jurisdiction and functions, Judicial review, Judicial activism, independence of Judiciary in India.	4 Hours
Total		28 Hours

Text Books:

T1. D. D. Basu, Introduction of Constitution of India, 22nd Edition, LexisNexis, 2015.

T2. K. Subas, An Introduction to India's Constitution and Constitutional Law, 5th Edition, National Book Trust India, 2011.

Course Outcomes:	At the end of this	course, the students	will be able to:
-------------------------	--------------------	----------------------	------------------

CO1	Provide basic information about Indian constitution.				
CO2	Analyze the legalities and related issues of drafting, adoption and enforcement of the Indian				
	Constitution as a fundamental law of the nation and the provisions and privileges of Indian				
	Citizenship.				
CO3	Understand and judiciously use the fundamental rights and privileges envisaged in the				
	constitution.				
CO4	Analyze the major dimensions of Indian Political System and to contribute in protecting and				
	preserving the sovereignty and integrity of India.				
CO5	Know the successful functioning of democracy in India				
CO6	Understand their obligations, responsibilities, privileges & rights, duties and the role that they				
	have to play in deciding the Administrative Machinery of the country.				
Туре	Code	Mathematics - II	L-T-P	Credits	Marks
------	---------------	------------------	-------	---------	-------
BS	BTBS-T-BS-211	Mathematics - 11	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and		
	concepts of numerical methods to solve the system of linear equations & ordinary		
	differential equations, interpolation, and applications of vector integral calculus.		
Pre-Requisites	A sound knowledge of linear algebra, basic calculus, and matrix algebra.		
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are		
	planned to be interactive with focus on problem solving activities.		

Module	Topics	Hours
	Root finding of algebraic and transcendental equations: Bisection method, Secant	
Module-1	and Regula-falsi methods, Newton's method, Fixed point iteration method, Rate of	11 Hours
	convergence. Experiential learning- Finding the root of transcendental equations	
	using MATLAB.	
	Interpolation: Lagrange interpolation, Newton's divided difference interpolation,	
Module-2	Newton's forward and backward interpolation. Numerical differentiation and	14 Hours
	Integration: Newton-Cotes quadrature formula, Trapezoidal rule, Simpson's rule,	
	2-point and 3-point Gauss Legendre rule. Euler method, Modified Euler method.	
	Experiential learning- Evaluation of numerical integrals and solution of initial	
	value problems.	
	Beta and Gamma functions, Vector Integral Calculus: Line Integrals,	
Module-3	Independence of Path, Double Integrals, Green's theorem with applications.	9 Hours
	Series Completion, Coding-Decoding, Data Sufficiency, Basic concepts on	
Module-4	Probability and statistics.	11 Hours
	Total	45 Hours

Text Books:

T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.

- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, A Modern Approach to Verbal & Non-verbal reasoning, S. Chand publication.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.
- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. B. P. Acharya, R. N. Das, A Course on Numerical Analysis, Kalyani Publishers
- R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley

Page **37** of **66**

Online Resources:

- 1. https://nptel.ac.in/courses/127106019
- 2. https://nptel.ac.in/courses/111102111
- 3. https://nptel.ac.in/courses/111105122
- 4. https://nptel.ac.in/courses/111105121
- 5. https://nptel.ac.in/courses/111105134

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply the numerical methods to find the approximate solutions of algebraic and transcendental equations.
CO2	Evaluate the real time problems using MATLAB.
CO3	Solve the numerical solution of differential equations and use of various techniques for evaluating the integrals.
CO4	Calculate line integrals in two dimensions for differential forms and also calculate double integrals in Cartesian and polar coordinates over the domains.
CO5	Know the basic concepts of verbal, non-verbal reasoning and logical ability for better employability.
CO6	Understand the basic concepts of mathematical theory of probability.

Туре	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTES-T-ES-203		4-1-0	3	150
					<u>.</u>

Objectives	Exploring basic data structures concept used in Industries		
Pre-Requisites Knowledge of Mathematics in Secondary Education and basic Programming con			
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.		

Module-#	Topics	Hours
Module-1	Introduction: Basic Terminologies: Algorithm Analysis: Mathematical Background, Model, Analyze, Running Time Calculations, Asymptotic Notations, classification of data structure. Basic data st ructure:1d-Array and 2d-Array Data Structure Operations: insertion, deletion, traversal Sparse matrix, address calculation of Array, ADT(Abstract Data type),DMA(Dynamic memory allocation),pointer, Self- referential structure. A comparison between DMA and SMA. De-allocation Strategy, Buddy System, Compaction.	10 Hours
Module-2	Stacks and Queues : ADT Stack array representation and its operations: Algorithms Applications of Stacks: Expression Conversion and evaluation of expression and corresponding algorithms, Experiential Learning: application of stack.Types of Queue: Simple Queue, Circular Queue, Priority Queue ADT queue,; Array representation and Operations on each types of Queues: Algorithms and their analysis, application of queue.(Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm) Priority Queues.	8 Hours
Module-3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.	8 Hours
Module-4	Sorting and searching: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Experiential Learning: Insertion Sort, Merge Sort, Quick Sort, Heap Sort, Radix sort; Performance and Comparison among all the methods, Searching: Experiential Learning: Linear search, Binary search and time complexity and space complexity analysis, Hashing: Hash function and technics of	8 Hours

Total		40 Hours
	Shortest path algorithm: Dijkstra's algorithm, topological sorting.	
	classification of graph Minimum spanning tree (Kruskal and prims algorithm),	
	representation), Graph search and traversal algorithms and complexity analysis,	
	Graph: Basic Terminologies and Representations (Adjacency matrix and linked list	
	Applications of all trees.	
	Tree: definitions, algorithms and analysis, Red black trees: definition and operation,	
Module-5	their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+	
	Search Tree, Tree Traversing, AVL Tree; Tree operations on each of the trees and	6 Hours
	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Binary	

Text Books:

- T1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press
- T2. Data Structures with C (Schaum's Outline Series), Seymour Lipschutz, TMH

Reference Books:

- R1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning
- R2. Data Structures And Algorithms A.V.Aho, J. E. Hopcroft, and J. D. Ullman, I, Pearson Education, First Edition Reprint 2003R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R3. How to solve it by Computer, 2nd Impression by R. G. Dormey, Pearson Education
- R4. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concept of Dynamic memory management, data types, algorithms, Big O
01	notation.
CO2	Understand basic data structures such as arrays, linked lists, stacks and queues.
CO3	Understand the implementation and application of linear data structure
CO4	Understanding of tree traversal techniques and their application
CO5	Understand the graph traversal and its application In real life.
CO6	Understand Algorithm for different sorting, searching techniques and their running
000	complexity, and basic concept of hash function

	~ -			~	
Туре	Code	English for Engineers-II	L-T-P	Credits	Marks
HS	BTBS-T-HS-211	English for Englicers-II	2-0-0	1	100

	To understand the nuances professional Communication
Objectives	To prepare students for real world interaction
	To enhance the soft skill competency of learners
Pre-Requisites	To have a common understanding of concepts of communication.
Teaching Pedagogy	Real world-based teaching learning pedagogy.

Module-#	Topics	Hours
Module-1	 Introduction to Professional Communication Patterns of Communication Patterns of Communication Formal &Semi Formal: Vertical, Horizontal, Diagonal communication Informal: Grapevine Informal and Internal Communication Experiential Learning: Patterns of Communication 	3+1(EL) 4Hours
Module-2	 Employment Communication & Soft skill 1.1. Cover Letter and Resume' Building, Types of Resumes: Traditional & Electronics 1.2. Presenting to the audience :4ps 1.3. Cross Cultural Competency 1.4. Group Discussion, Types of GD, Do's and don'ts 1.5. Interview, Types of Interviews, How to Prepare for an Interview Experiential Learning: Cross Cultural Competency 	2+2+2+2+2 =10+4(EL) Hours

Module-3	Literature Appreciations Steve Jobs by Isaacson Walter An Interview with Microsoft CEO: Satya Nadella by Sudipta Sengupta, TNN, March 10,2023 	6 Hours+ 1(EL)=7Hr
	Experiential Learning: Book Review	

Reference Books:

- R1. Corporate Soft Skills-Sarvesh Gulati- Rupa Publications
- R2. Bridging the Soft Skills Gap- Brucetulgan
- R3. Excellence in Business Communication John V. Thill, Courtland Bovee
- R4. Simply Said: Communicating Better at Work and Beyond by Jay Sullivan
- R5. Steve Jobs by Isaacson Walter

Online Resources:

https://communicationmgmt.usc.edu https://nptel.ac.in www.britishcouncil.org https://eltai.ac.in https://in.coursera.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the various forms and Channels of communication in a corporate world
CO2	Develop skills to meet the placement challenges
CO3	Implement different forms of writing for professional needs
CO4	Acquiring skills set to sustain the professional careers.

Туре	Code	Elements of Engineering	L-T-P	Credits	Marks
BS	BTBS-P-BS-102	Physics Laboratory	0-0-2	1	100

Objectives The laboratory should help students to understand the role of direct of physics and to distinguish between inferences based on theory and on the experiments.	
Pre-Requisites	Knowledge of Physics in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	
Experiment-1	Determination of acceleration due to gravity (g) by bar pendulum.	2 Hours
Experiment-2	Determination of rigidity modulus by using Barton's apparatus.	2 Hours
Experiment-3	Determination of surface tension of a given liquid by capillary rise method.	2 Hours
Experiment-4	Determination of wavelength of an unknown monochromatic source of light using Newton's ring apparatus.	2 Hours
Experiment-5	Plotting of V~I characteristics of PN junction diode.	2 Hours
Experiment-6	Determination of Young's modulus by using Searle's apparatus	2 Hours
Experiment-7	Plotting of input and output characteristics of BJT (Bipolar junction	2 Hours
Experiment-8	Determination of grating element of a plane diffraction grating.	2 Hours
Experiment-9	Determination of co-efficient of thermal conductivity of a bad conductor by Lee's disc method.	2 Hours
Experiment-10	Verification of laws of vibrations in a stretched string using Sono metre.	2 Hours
	BEYOND SYLLABUS	2 Hours
Experiment-11	To find out the resistance of unknown wire by using Meter bridge.	2 Hours
Total		22 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the laws to various process and real system.
CO2	Study basics of semiconductor & devices and their applications in different areas.
CO3	Distinguish the importance of different properties of material.

Page **43** of **66**

CO4	Design new instruments with practical knowledge.
CO5	Analyze, interpret and summarize the experimental results and compare with theoretical
CO6	Troubleshoot effectively in laboratory settings.

Indicative Projects

- 1. To make a periscope to understand the laws of reflection.
- 2. To make an electromagnet.
- 3. To make a line following Robot.
- 4. To make a portable Mobile charger.
- 5. To make a Rain Alarm /soil moisture Detector.
- 6. To make an Automatic street light.
- 7. To make a proto type solar panel.
- 8. To make a gas leakage detector.
- 9. To make a temperature sensor.
- 10. To build an earthquake alarm.
- 11. To make a coin cell by using super capacitor material.

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-P-BS-103	Applied Chemistry Laboratory	0-0-2	1	100

ObjectivesThe laboratory will help the students on the volumetric analysis, calculations to mass- volume relation etc.ObjectivesThe students will get knowledge on the synthesis of different medicines, prepar soap & detergents etc. The students will get knowledge on the operation of different equipment's.	
Pre-Requisites	Knowledge of chemistry in Secondary Education.
Teaching PedagogyRegular practical classes with use of virtual lab as and when require are planned to be interactive with focus on problem solving activities	

Module-#	Topics	Hours			
Experiment-1	Standardization of KMnO4 by using sodium oxalate. Determination of $Fe2^+$ ion in a double salt.	2 Hours			
Experiment-2	Preparation of Aspirin	2 Hours			
Experiment-3	To determine Dissolved oxygen in a given sample of water	2 Hours			
Experiment-4	Determine the amount of Sodium Hydroxide and Sodium carbonate in the given solution using Standard acid	2 Hours			
Experiment-5	Estimation of Ca^{2+} ion in a sample of limestone	2 Hours			
Experiment-6	Determination of partition coefficient of I_2 between benzene and water.	2 Hours			
Experiment-7	Determination of flash and fire point of an oil by Pensky Martine's apparatus.	2 Hours			
Experiment-8	Determination of viscosity of lubricating oil by Redwood viscometer.	2 Hours			
Experiment-9	Determination of available chlorine in a sample of bleaching powder	2 Hours			
Experiment-10	Experiment-10 Determination of TH value of water by EDTA method.				
BEYOND SYLLABUS					
Experiment-11	Preparation of soap and detergent.	2 Hours			
	Total	22 Hours			

Course Outcomes: At the end of this course, the students will be able to:

CO1	Acquire knowledge on the basic volumetric analysis.
CO2	Classify various fuels based on combustion parameters and understand the working Principle based on their properties.
CO3	Know the importance of analytical techniques, instrumentation and applications
CO4	Impart knowledge on of water quality parameters and treatment of water.
CO5	Acquire Knowledge about synthesis and preparation of drugs, soap etc.

Page **45** of **66**

Indicative Projects

- 1. Preparation Detergent Powder From Paddy Husk
- 2. Quantity of Presence of Casein in Different Samples of Milk
- 3. Preparation of Organic Dye.
- 4. Preparation of Toilet Soaps
- 5. Presence of Oxalate Ions in Guava Fruit and Different Stages of Ripening.
- 6. Sterilization of Water Using Bleaching Powder.
- 7. Preparation of ash brick.
- 8. Preparation of Gelatin.
- 9. Preparation of Paracetamol.
- 10. Preparation of Ink.
- 11. Effect of Potassium Bisulphate as a Food Preservative.

Туре	Code	Basic Electrical Engineering Laboratory	L-T-P	Credits	Marks
ES	BTBS-P-ES-101		0-0-2	1	100

Objectives To train the students in conducting load tests on electrical circuit and equipment's To gain practical experience in characterizing electrical machinery.	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Study of Different Electrical measuring Instruments and other electrical equipment	2 Hours
Experiment-2	Verification of thevenin's theorem using DC circuits.	2 Hours
Experiment-3	Verification of Superposition theorem theorem using DC circuits.	2 Hours
Experiment-4	Verification of Maximum power transfer theorem using DC circuits.	2 Hours
Experiment-5	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	2 Hours
Experiment-6	Verification and calculation of Resonance frequency in series R-L-C circuit.	2 Hours
Experiment-7	Connection and Demonstration of Domestic Wiring System	2 Hours
Experiment-8	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers	2 Hours
Experiment-9	Power and phase measurements in three phase system by two wattmeter method	2 Hours
Experiment-10	OC and SC test on single phase transformer	2 Hours
	BEYOND SYLLABUS	
Experiment-11	Verification of Ohm's Law	2 Hours
Experiment-12	Verification of B-H curve	2 Hours
Total		24 Hours

Page **47** of **66**

1. <u>http://vlabs.iitkgp.ernet.in/be/</u>

2. <u>http://sl-coep.vlabs.ac.in/</u>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify different Electrical Instruments and measure different parameters.
CO2	Study connection and demonstration of DC generators, motors and wiring systems.
CO3	Study design and connection of Different Lamps
CO4	Identify active and passive electronic components and handle measuring instruments like
CO5	Design different circuits using diode, BJT and opamps.
CO6	Design and analyze logic gates

Indicative Projects

SL. NO.	NAME OF THE PROJECT
1	Mobile Charger
2	Extension Board
3	Multiple USB Port
4	Brushless DC Motor Driver
5	Small Transformers Upto 7V.
6	Small Model Of Bio-Gas Plant
7	Temperature Control 12v DC Fan
8	Making Of Led Bulbs.

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-102	Basic Electronics Engineering Laboratory	0-0-2	1	100

Objectives	To train the students in conducting load tests on electrical machines	
	I o gain practical experience in characterizing electronic devices	
	To train the students to use CRO and DSO for measurements	
Pre-	Knowledge of Physics and Mathematics in Secondary Education	
Requisites		
Teaching	Regular practical classes with use of virtual lab as and when required, sessions are	
Scheme	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	Study of Different Electrical measuring Instruments and other electrical equipment	2 Hours
Experiment-2	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	2 Hours
Experiment-3	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers.	2 Hours
Experiment-4	Connection and Demonstration of Domestic Wiring System.	2 Hours
Experiment-5	Model Study & Connection of Different Lamps (Mercury Vapor Lamp, Tungsten, LED Bulbs, Fluorescents, CFL)	2 Hours
Experiment-6	A:- Identification of electronic components, devices and Basic Sensors,B:- Study and use of CRO/ DSO, Function generator to view and measure different wave forms.	2 Hours
Experiment-7	Design of Simple Diode Circuit and Study of V-I characteristics of semiconductor Diode & calculation of DC and AC Resistance	2 Hours
Experiment-8	Design of Half – wave rectifier and full wave rectifier circuits, and calculation of efficiency	2 Hours
Experiment-9	Design of inverting and non- inverting amplifiers using Op-Amp to view and measure waveforms	2 Hours
Experiment-10	Study and truth table verification of logic gates.	2 Hours
	BEYOND SYLLABUS	
Experiment-11	Design of simple BJT Bias circuit to draw VI characteristics (input & output) of a NPN transistor (in CE configuration)	2 Hours
Experiment-12	Verification of Ohm's Law	2 Hours
	Total	24 Hours
		Page 49 of 66

Online Resources:

- <u>http://vlabs.iitkgp.ernet.in/be/</u>
 <u>http://sl-coep.vlabs.ac.in/</u>

2

э.	
CO1	To identify different Electrical Instruments and measure different parameters.
CO2	To study connection and demonstration of DC generators, motors and wiring systems.
CO3	To study design and connection of Different Lamps
CO4	To identify active and passive electronic components and handle measuring instruments like CRO and DSO.
CO5	To design different circuits using diode, BJT and opamps.
CO6	To design and analyze logic gates

Indicative Projects

SL.	NAME OF THE PROJECT
NO.	
1	Night light using LDR.
2	Automatic Fan ON/OFF using Temperature Sensor.
3	Moisture Controller using Moisture Sensor.
4	Fire Alarm using Temperature Sensor.
5	Light ON /OFF using Piezo Sensor.
6	Clap sound Operated using Sound Sensor.
7	Rain Detector
8	Power supply Circuit
9	Touch less Doorbell
10	Motion Detector using Ultrasonic Sensor

Туре	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-103	Basic Programming Skills Laboratory	0-0-4	2	100

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
Teaching Pedagogy	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life problem solving activities.

	Detailed Syllabus	
Module-#	Topics	Hours
Experiment-1	Familiarity with basic UNIX/LINUX command, vi editor. Sample C Program.	2 Hours
Experiment-2	Programs on arithmetic expressions, operators, and precedence.	2 Hours
Experiment-3	Programs on Conditional Branching.	2 Hours
Experiment-4	Programs on Loops.	2 Hours
Experiment-5	Programs on single dimensional array.	2 Hours
Experiment-6	Programs on two-dimensional array.	2 Hours
Experiment-7	Programs on Functions.	2 Hours
Experiment-8	Programs on Recursive Functions.	2 Hours
Experiment-9	Programs on Pointers.	2 Hours
Experiment-10	Programs on Dynamic Memory Allocation.	2 Hours
Experiment-11	Programs on Structure.	2 Hours
Experiment-12	Programs on Union.	2 Hours
Experiment-13	Programs on File Handling.	2 Hours
Experiment-14	Implementation of Linear search.	2 Hours
Experiment-15	Implementation of sorting algorithm: Bubble Sort	2 Hours
Experiment-16	Arduino Programming – Introduction to Sensors, Introduction to Microcontrollers.	2 Hours
Experiment-17	Programing, Serial Communication	2 Hours
Experiment-18	Arduino based Project	2 Hours

Page **51** of **66**

Total	38 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Remember basic understanding of computer and basic concepts of running programs.
CO2	Understand the concepts of decision making and looping for solving problems.
CO3	Learn to concise and precise on implementing pseudo code using functions
CO4	Illustrate the usages of array, function and pointer in programming.
CO5	Select the user define data type structure, union and enum for problem solving.
CO6	Develop projects using different file handling functions.

Projects using C Programing

- 1) Unit Converter
- 2) Customer Billing System in a Shopping Mall
- 3) Banking Management System
- 4) University Grading System
- 5) Bus Ticket Reservation System
- 6) Home Automation System
- 7) Digital Wall Clock
- 8) Book Support Automation
- 9) Lab Management System
- 10) Nursery Management System

Arduino based Project

- 1) Obstacle detection using Arduino
- 2) Controlling 4 LEDs to make different patterns
- 3) Voice Activation System
- 4) Use Humidity Sensor using Arduino
- 5) Arduino Based Color Detector
- 6) Touch Dimmer Switch Circuit Using Arduino
- 7) Wireless Door Bell
- 8) Arduino Traffic Light Controller
- 9) Frequency Counter Using Arduino
- 10) Arduino 4-Digit 7-Segment LED Display
- 11) Arduino based Digital Thermometer
- 12) Arduino Light Sensor
- 13) Portable Ultrasonic Range Meter
- 14) Security Alarm System Using Arduino
- 15) Arduino Alarm Clock
- 16) Interfacing LCD with Arduino

Туре	Code	Basic Mechanical Engineering Laboratory	L-T-P	Credits	Marks
ES	BTBS-P-ES-104		0-0-2	1	100

Objectives	To train the students in conducting experiment and get acquainted with different measuring devices, gain practical experience on Refrigerator, IC engine, Hydraulic Machines, Power transmission system and Gear trains. Experience application of Bernoulli's theorem and Meta center.	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education	
Teaching Scheme	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	Validation of Bourdon tube pressure guage with U-tube Manometer	2 Hours
Experiment-2	Verification of Flow measuring apparatus (Venturi meter/ orifice meter/ rota meter)	2Hours
Experiment-3	Determination of COP of Domestic refrigerator	2 Hours
Experiment-4	Draw valve timing diagram of two stroke & four stroke petrol and diesel engine	2Hours
Experiment-5	Verification of Bernoulli's Theorem	2 Hours
Experiment-6	Determination of Meta centre	2 Hours
Experiment-7	Determination of mechanical efficiency of Pelton & Francis Turbine	2 Hours
Experiment-8	Comparison of efficiency of Centrifugal pump apparatus, Reciprocating	2 Hours
Experiment-9	Determination of speed ratio of Simple ,Compound & reverted Gear train	2 Hours
Experiment-10	Demonstration of power transmission system	2 Hours
Total		20 Hours

At the end of the semester students will able to

CO1	Experience different pressure and flow measuring instruments
CO2	Experience working principle of refrigerator and IC engines
CO3	Get knowledge about application of Bernoulli's Theorem and Meta centre
CO4	Get knowledge of different types of hydraulic machines
CO5	Experience different types gear trains and able to find out mechanical advantage and gear
CO6	Get idea of power transmission system

Indicative Projects (Mechanical)

- 1. Component Preparation using 3D Printing
- 2. Specimen preparation technique for Metallurgical study.
- 3. To prepare a ship model for verification of Archimedes principle.
- 4. Model of Steam power plant.
- 5. Overhead gantry crane of 3-axis movements.
- 6. Leading & Trailing brake arrangement in Drum Brake
- 7. High speed reduction in gear drive by using worm & worm wheel.
- 8. Specimen preparation and its test in UTM.
- 9. Wind Turbine Model.
- 10. Preparation hexagonal headed Bolt (Facing & Turning)
- 11. Specimen preparation and its test in Fatigue testing machine.
- 12. Water turbine Project Model
- 13. Preparation hexagonal headed Bolt (Step Turning & Thread Cutting)
- 14. Preparation of Components/names in CNC Wood Router
- 15. Bio-fuel preparation and Study.
- 16. Compound gear train using by using Spur gear.
- 17. Fast and loose pulley arrangement using Belt drive
- 18. Development of cone clutch for power transmission.
- 19. Conversion of Reciprocating to rotary motion using Crank & Connecting rod.

Туре	Code	Basic Civil Engineering Laboratory	L-T-P	Credits	Marks
ES	BTES-P-ES-102		0-0-2	1	100

Objectives	To train the students in conducting different test on engineering materials.	
	To gain practical experience in characterizing soil and handling hydraulic machines.	
	To train the students to use different measuring instruments.	
Pre-Requisites	Knowledge of Physics and Chemistry in Secondary Education	
Teaching Pedagogy	Regular practical classes with use of virtual labas and when required, sessions are planned to be interactive with focus on problem-solving activities.	

Module-#	Topics	Hours	
Experiment-1	Water absorption test of brick.	2 Hours	
Experiment-2	Compressive strength of Brick.	2 Hours	
Experiment-3	Determination of Specific gravity of soil	2 Hours	
Experiment-4	Sieve Analysis of Soil.	2 Hours	
Experiment-5	Study of different instruments used in survey.	2 Hours	
Experiment-6	Compressive strength of Concrete.	2 Hours	
Experiment-7	Study of Different types of pipe fittings	2 Hours	
Experiment-8	Measurement of bearing of a line.	2 Hours	
Experiment-9	Study of Solenoid Valve	2 Hours	
Experiment-10	Study of Sensors.	2 Hours	
	BEYOND SYLLABUS	2 Hours	
Total		20 Hours	

Course Outcomes: At the end of this course, the students will be able to:

CO-1	Identify the different properties of building materials
CO-2	Understanding the different modes of transportation
CO-3	Study of engineering properties of soil
CO-4	Analyze of water supply system by sensors and solenoids
CO-5	Evaluating different types of pumps
CO-6	Explore the uses of different instruments used in civil engineering work

Indicative Projects (Civil)

- 1. Intelligent transportation system. prototype
- 2. Glass fiber reinforced concrete.
- 3. pH test of drinking water in gift campus.
- 4. Preparation of building blocks.
- 5. Identification of different parts of dam prototype
- 6. Pavement layer identification prototype
- 7. Concept of suspension bridge –prototype
- 8. Construction of English bond in cement mortar.
- 9. Study of properties for the locally available Soil .
- 10. Testing of compressive strength of the local stone in Khordha.
- 11. Admixtures used in RMC visit to plant
- 12. Preparation of fly ash brick.
- 13. Seasoning of timber.
- 14. Types of timber used in construction.
- 15. Tensile strength test of steel in construction
- 16. Identification of components of a building prototype
- 17. Various field test of cement.

Туре	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-104	Engineering Graphics with Auto-CAD	0-0-3	1.5	100
		Laboratory			

Objectives	To develop the ability to produce simple Engineering Drawings based on current practic	
	nd to increase the skill to read the Product, Manufacturing, and Construction drawing	
	used in Industries.	
Pre-Requisites	Basic Knowledge on simple Geometry And shape of Simple Solid's	
Teaching	Regular practical classes with use of virtual labs and when required sessions are	
Pedagogy	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	To prepare a sheet on Lines and their uses.	3Hours
Experiment-2	To prepare a sheet on Lettering, dimensioning.	3Hours
Experiment-3	To prepare a sheet on Projection of point and lines.	3Hours
Experiment-4	To prepare a sheet on Projection of planes & Solids .	3Hours
Experiment-5	To draw Lines/Planes/ solids using Auto CAD.	3Hours
Experiment-6	To prepare a sheet on section of Solid and development of surfaces.	3Hours
Experiment-7	To draw the Ortho graphics projections of solids and sectioning using Auto	3Hours
Experiment-8	To Prepare a sheet on isometric projections.	3Hours
Experiment-9	To draw isometric view of solids using Auto CAD.	3Hours
Experiment-10	To prepare a sheet on Building Drawing.	3Hours
	BEYOND SYLLABUS	
Experiment-11	To draw Ortho Graphic views of standard Isometric Solids.	3 Hours
Total	·	33 Hours

After completing this course the students should be able to:

CO1	Understand the visual aspect of engineering drawing, scales and Orthographic Projections	
CO2	Acquire knowledge on projection of points, lines and plane surfaces and solids.	
CO3	Understand the basics of Auto CAD, Commands and Toolbar.	
CO4	Apply modern engineering tools like Auto CAD and creating working drawings on sectioning	
	of Solids and development of surfaces.	
CO5	Able to draw Isometric view of standard Solids using Auto CAD.	
CO6	Apply the knowledge to create building drawings	

Page **57** of **66**

Indicative Projects

- 1. 2D Drawing from Simple 3D Object With given Specification.
- 2. Component Diagram of Simple Physical Sheet Metal Part, Worm Gear, Hub-Shaft.
- 3. Nut-Bolt-Washer assembly, simple Plastic component
- 4. 2D Drawing from Simple 3D Object of Agriculture component..
- 5. Drawing of simple Storage Bin/Silo.
- 6. Drip Layout Sketch.
- 7. Drawing of Rooftop Garden Planning
- 8. Drawing of switch, Led monitor.
- 9. Drawing of Plug socket, Diode & Transistor.
- 10. House Wiring Diagram For a room having 1-Lamp, 1-Fan and 1-Plug socket.
- 11. 2D drawing of Disc Antenna, Common electronics components
- 12. 2D drawing of Electronics components symbol diagram with circuit.
- 13. Drawing Of All Simple Graphic Element & Monitor stand..
- 14. Drawing monitor
- 15. 2D drawing of Keyboard and CPU.

Туре	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-105	Workshop Practice –I Laboratory	0-0-3	1.5	100

Objectives	The laboratory should help students to understand the role of different tools & its function for different operation by manually or by machine to get different job as required
Pre-Requisites	Knowledge of different geometry in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual labs and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	To make a Square from the given mild steel piece	3 Hours
Experiment-2	To make a V-Square fit from the given mild steel piece 3	
Experiment-3	3 To prepare a Lap Joint with Electric Arc welding.	
Experiment-4	To prepare a butt Joint with V-Groove Electric Arc welding. Method.	3 Hours
Experiment-5	To prepare butt/T-joint by gas welding	3 Hours
Experiment-6	To prepare joint by Soldering /Brazing.	3 Hours
Experiment-7	To prepare a job on given specimen in machine shop. (turning, threading ,knurling,milling,drilling and shaping	3 Hours
Experiment-8	To make the Mortise &tenon –joint wood	3 Hours
Experiment-9	To make the dovetail joint on wood.	3 Hours
Experiment-10	To make tray from sheet metal	3 Hours
	BEYOND SYLLABUS	3 Hours
Experiment-11	To make funnel in sheet metal	3 Hours
Total		33 Hours

After completing this course the students should be able to:

CO1	Learn the safety measures, different tools and equipment used in mechanical workshop.
CO2	Understand the concept of metal joining process and its engineering application.
CO4	Improve understanding of various fitting jobs & its application.
CO4	Understand the various machining process in Machine shop.
CO5	Learn Hands on practices & Job making in Carpentry Shop.

Page **59** of **66**

CO6 Discuss the application of Sheet metal Operation.

Indicative Projects

- 1. To make Gas cylinder stand by M.S. flat
- 2. To make Refrigerator stand by wooden plank
- 3. To make Wooden table
- 4. To make Partial Parshall flume (Venturi)
- 5. To make Drop spill way(wooden)
- 6. To make Indigenous plough(wooden)
- 7. To make Tray drier(sheet metal)
- 8. To make T.W. switch board for three switches and one socket
- 9. To make Sheet metal box to conduit wiring
- 10. To make Simple open water turbine
- 11. To make Soldering rod
- 12. To make Monitor stand
- 13. To make Phone or Tab stand
- 14. To make Support IOT kit implementation in ceiling fan hanging support rod
- 15. To make multimeter board.

Туре	Code	English for Engineers I (Laboratory)	L-T-P	Credits	Marks
BS	BTHS-P-HS-111	English for Englicers –1 (Laboratory)	0-0-2	1	100

	To develop the skills in communication.
	To evaluate the LSRW skills with efficiency.
Objectives	To distinguish the sub skills of reading comprehension for better understanding.
	To implement the process of effective writing.
Pre-Requisites	To have basic knowledge on LSRW skills
Teaching Pedagogy	Regular sessions are planned to be interactive with examples to be acquainted with different types of communication context.

SL NO	NAME OF THE ACTIVITY	HOURS
ACTIVITY 1	Ice Breaking & Self- Introduction	2 Hours
ACTIVITY 2	The Raman Effect, Reading: Task1- Task 3, Vocabulary: Task4- Task 5 (Prefixes and Suffixes)	2 Hours
ACTIVITY 3	The Raman Effect, Grammar: Identifying Common Errors in Writing. (Task 6 to Task 15)	2 Hours
ACTIVITY 4	The Raman Effect, Writing: (Task 16 to Task 29) Paragraph Writing	2 Hours
ACTIVITY 5	Ancient Architecture, Vocabulary: Task1 to Task 3 (Synonym and Antonym), Grammar: Subject-verb Agreement. (Task 4 to Task 7)	2 Hours
ACTIVITY 6	Ancient Architecture ,Writing: Task11 to Task 18 (Formal Letter an)	2 Hours
ACTIVITY 7	Sounds of English	2 Hours
ACTIVITY 8	Sounds of English	2 Hours
ACTIVITY 9	Role Play	2 Hours
ACTIVITY 10	Debate	2 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Develop the understanding of language
CO2	Discuss the rules of language for effective communication
CO3	Analyze the pronunciation of English language
CO4	Recognize different forms of formal writing

Туре	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTES-P-ES-203	Laboratory	0-0-4	2	100

Objectives	Exploring basic data structures such as stacks and queues	
Pre-Requisites	Knowledge of Mathematics in Secondary Education and basic Programming concept.	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.	

Module-#	Topics	Hours		
Experiment-1	t-1 Write a C program to perform matrix addition and multiplication using array			
Experiment-2	Write a C program to create a stack using an array and perform	2Hours		
	(i) push operation			
	(ii) pop operation			
Experiment-3	Write a C program to create a queue and perform	2Hours		
	(i) Push			
	(ii) Pop			
	(iii) Traversal			
Experiment-4	Write a C program that converts infix expression into postfix expression	2Hours		
-	Using Stack operations.			
Experiment-5	Write a C program that evaluates postfix expression using Stack operations	2Hours		
Experiment-6	Write a C program that uses functions to perform the following operations on	2Hours		
	Single linked list:			
	(i) Creation			
	(ii) Insertion			
	(iii) Deletion			
	(iv) Traversal			
Experiment-7	Write a C program that uses functions to perform the following operations on	2Hours		
	Double linked list:			
	(i) Creation			
	(ii) Insertion			
	(iii) Deletion			
	(iv) Traversal in both ways			
Experiment-8	Write a C program that uses functions to perform the following operations on	2Hours		
_	Binary Search Tree:			
	(i) Creation			
		Page 62 of 6		

	(ii) Insertion	
	(iii) Deletion	
Experiment-9	Write a C programs that use both recursive and non-recursive functions to perform the Linear search operation for a Key value in a given list of integers Write C program that use both recursive and non-recursive functions to perform the Binary search operation for a Key value in a given list of integers	2Hours
Experiment-10	Write a C program that implement Bubble Sort method to sort a given list of integers in descending order	2Hours
Experiment-11	Write a C program that implements Quick Sort method to sort a given list of integers in ascending order	2Hours
Experiment-12	Write a C program that implements Insertion method to sort a given list of integers in ascending order	2Hours
Experiment-13	Write a C program that implements merge sort method to sort a given list of integers in ascending order	2Hours
Experiment-14	Write a C program that implements heap sort method to sort a given list of integers in ascending order	2Hours
Experiment-15	Write a C program that implements selection sort method to sort a given list of integers in ascending order	2Hours

CO1	To insert and delete elements from appropriate position in an array.
CO2	To search an element and print the total time of occurrence in the array
CO3	To represent a Sparse Matrix.
CO4	To delete all occurrence of an element in an array.
CO5	Array implementation of Stack.
CO6	Array implementation of Linear Queue.

Indicative Projects Arduino based Project

- 1) Contacts directory System
- 2) Texting editor relied on Stacks
- 3) BST which follows the Memorization procedure
- 4) Search system (in Library)
- 5) Snakes and Ladders Game
- 6) Sorted_double_sentinel_list
- 7) Phone directory application using doubly-linked lists
- 8) Spatial indexing with quadtrees
- 9) Numerical representations with random access lists
- 10) Stack-based text editor
- 11) Personal Diary Management System

- 12) Tic-Tac-Toe Game
- 13) Tank Game
- 14) Travel Agency Management System
- 15) Pharmacy Management System

Туре	Code		L-T-P	Credits	Mark
BS	BTBS-P-HS-211	English for Engineers –II (Laboratory)	0-0-2	1	100

Objectives	To equip the students with different forms of professional writing To acquaint them with interpersonal etiquette to face corporate challenges To understand the nuances of GD-PI
Pre-Requisites	Basic knowledge of applications of communication
Teaching Pedagogy	Application oriented, task based, need based, teaching Pedagogy

Activity No	Activity Name	Hours
Activity: 1	Blue Jeans Sub Skills of Reading: Task14- Task 15	2 Hours
Activity:2	How a Chinese Billionaire Built Her Fortune Vocabulary: Task1 to Task 3 (Technical and Computer related Terms)	2 Hours
Activity:3	How a Chinese Billionaire Built Her Fortune Writing: Task12 to Task 14(Report)	2 Hours
Activity:4	Sop practice,	2 Hours
Activity:5	Proposal Writing	2Hours
Activity:6	Oral Presentation 1	2 Hours
Activity:7	Oral Presentation 2	2 Hours
Activity:8	Group Discussion1	2 Hours
Activity:9	Group Discussion 2	2 Hours
Activity:10	Mock Interview	2 Hours
Total		20 Hours

Page **65** of **66**

Course Outcomes: At the end o	f this course, th	he students will	be able to:
-------------------------------	-------------------	------------------	-------------

CO1	Develop knowledge in interpersonal communication.
CO2	Develop skills for corporate readiness.
CO3	Implement the different forms of professional correspondence.
CO4	Apply English grammar and essentials of language skills as per present requirement.

Syllabus for B. Tech (2nd Year) (2023 Admission Batch)

AGRICULTURE ENGINEERING

(Approved by Academic Council and Board of Studies)

GIFT Autonomous College

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela) Recognized under section 2(f) of the UGC act, 1956 At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pin code: 752054

	Third Semester						
~		1	,	Гһеогу			1
SI. No.	Category	Course Code		Course Title		WCH L-T-P	Credit
1	BS	BTBS-T-BS-302	Ap	plied Mathematics		4-0-0	4
2	РС	BTAG-T-PC-301	Farı Equ	m Machinery and ipment I		4-0-0	3
3	PE	BTAG-T-PE-301	Ref cor	frigeration and Air aditioning		4-0-0	3
4	РС	BTAG-T-PC-302	Ag Eng	riculture for gineering		4-0-0	3
5	PE	BTAG-T-PE-303	Soi Coi and	l and Water nservation Engineering Structures	5	4-0-0	3
6	HS	BTBS-T-HS-301/ BTBS-T-HS-302	ов	/EEC		3-0-0	3
7	ES	BTCS-T-ES-301	00	PS JAVA		4-0-0	2
8	MC	BTMC-T-MC- 301	Env	Environmental Engineering		2-0-0	0
9	SC	BTSC-T-SC-301	EET-1		2-0-0	1	
			Tota	al Hours/ Credit (Theory)		31	22
Practi	ical	1					1
1	PC	BTAG-P-PC-301		Farm Machinery and Equipment I Lab	()-0-2	1
2	PC	BTEC-P-PC-302	Agriculture For Engineering Lab 0-0-2		1		
3	ES	BTCS-P-ES-301	CS-P-ES-301 OOPS LAB		(0-0-2	1
4	PS	BTPS-P-PS-301 Seminar-1		()-0-3	1	
5	SC BTSC-P-SC-301 ESI-1 0-0-3)-0-3	1			
	Total Hours/Credit(Practical) 12			5			
	Grand Total Hours/ Credit(Practical) 43		43	27			

		1	Fourth Somostor		
SI. No.	Category	Course Code	Course Title	WCH L-T-P	Credit
1	PC	BTAG-T-PE-401	Farm Machinery and Equipment II	4-0-0	3
2	РС	BTAG-T-PC-402	Engineering Properties of Agricultural Produce	4-0-0	3
3	РС	BTAG-T-PC-403	Mechanics and Open Channel Hydraulics	3-0-0	3
4	HS	BTBS-T-HS-301/ BTBS-T-HS-302	OB/EEC	4-1-0	3
5	PE	BTAG-T-PE-401	Agricultural Structural and precision farming	3-1-0	3
6	00	BTAG-T-OO-401	NPTEL	2-0-0	2
7	SC	BTSC-T-SC-302	EET-2	2-0-0	1
Total Hours/ Credit(Theory) 30 18					18
			Practical		
1	РС	BTAG-P-PC-401	Farm Machinery and Equipment II Lab	0-0-2	1
2	PC	BTAG-P-PC-402	Engineering Properties of Agricultural Produce Lab	0-0-2	1
3	PC	BTAG-P-PC-403	Mechanics and Open Channel Hydraulics Lab	0-0-2	1
4	PS	BTPS-P-PS-401	Project 1	0-0-3	1
Total Hours/ Credit(Practical) 9 4					4
Grand Total Hours/ Credit(Practical) 39 22					
SUMMER INTERNSHIP TRAINING for 30 Days					

Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmers defined by NBA are:

PO1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the Engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

L	Lecture
Т	Tutorial
Р	Laboratory / Practical / Sessional
WCH	Weekly Contact Hours
BS	Basic Sciences
HS	Humanities & Social Sciences (including Management)
ES	Engineering Sciences
PC	Professional Core
PE	Professional Elective
OE	Open Elective
MC	Mandatory Course
SC	Skill Course
EEC	Employability Enhancement Course

SEPD Skill Enhancement and Personality Development

Subject Category

Part 2 2nd Year B. Tech. (AGRICULTURE ENGINEERING)
Evaluation process

1. Evaluation Process of Theory Subjects:

	Internal Examination (B. Tech, Autonomous)						
Sr No	Type of Test	Mark	Frequency	Total Mark	Reduced Mark		
1	Modular Test	25	3	75	50		
2	Online Quiz Test	10	6	60	10		
3	Assignment	5	2	10	10		
4	Subject Specific Project	100	1	100	15		
5	Attendance	15	1	15	15		
	TOTAL 190						
	Pass	Mark			45		

	Proposed External Examination (B. Tech, Autonomous)					
Sr No	Type of Test	Mark	Frequency	Total Mark		
1	End Semester Examination	100	1	100		
Pass Marl	(35		

2. Evaluation Process of Practical Subjects:

Components	Marks	Frequency	Assigned To
Attendance	10	Closing of Instruction	To be retrieved from CMS
Daily Performance & Viva-voce	40	On the day of Experiment	Concerned Faculty (Upload in CMS in weekly basis)
Lab Record	20	On the day of Experiment	Concerned Faculty
End-Semester Lab Test	30	1	At the end of the semester as per the schedule published by Examination Cell
Total	100		

Components	Marks	Frequency	Assigned To
End-Semester Examination	100	1	Examination Cell/ Concerned Faculty
Total	100		
Evaluation Process of N	Mandatory C	Courses:	
Components	Marks	Frequency	Assigned To
Components In-Semester Evaluation	Marks 100	Frequency 1	Assigned To Examination Cell/ Concerned Faculty

Туре	Code	A 1' . J. N /T . / 1 / '	L-T-P	Credits	Marks
BS	BTBS-T-BS-302	Applied Mathematics	4-0-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and Concepts of Laplace and the Amplitude Transients; Fourier transformations, Partial Differential Equations, complex analysis and probability.
Pre-Requisites	A basic knowledge of calculus, and elementary probability theory.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned

Module-#	Торіс	Hours
Module-1	Laplace transformation, Inverse Laplace transformation, Unit step function, Dirac's delta function, Convolution, applications in solving differential Equations and Integral Equations.	10 Hours
Module-2	Fourier series, Fourier expansion of functions of any period, Even and odd Functions, Half range Expansion, Fourier transform and Fourier Integral.	12 Hours
Module-3	Partial Differential Equation: Basic concepts, Solution of PDE by separating variables, Alembert's Solution of wave equation, Heat equation: Solution by Fourier series, Heat equation: Solution by Fourier Integrals and transforms.	11 Hours
Module-4	Complex analysis: Complex plane, polar form, power and roots, analytic Function, Cauchy Riemann equations, harmonic function, Laplace functions. Probability: Random variables, Probability distributions, Mean and variance of a distribution, Binomial, Poisson and Normal distributions.	12 Hours
	Total	45 Hours

Text Books:

T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.

T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.

Reference Books:

R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press. R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.

R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.

Online Resources:

- 1. https://nptel.ac.in/courses/111106100
- 2. https://nptel.ac.in/courses/111105121
- 3. https://nptel.ac.in/courses/111104137
- 4. https://nptel.ac.in/courses/111107108
- 5. https://nptel.ac.in/courses/111106051
- 6. https://nptel.ac.in/courses/111105134

CO1	Apply the knowledge of Laplace transform to solve the complex engineering problems.
CO2	Find the Fourier series and Fourier transforms of functions.
CO3	Illustrate the applications of Laplace & amp; Fourier Transformations.
CO4	Understand the heat and wave equations.
CO5	Understand the concepts of Analytic function.
CO6	Understand the basic concept on probability and various distributions.

Туре	Code	Form Machinery and Fauinment I	L-T-P	Credits	Marks
PC	BTAG-T-PC-301	Farm Machinery and Equipment I	4-0-0	3	150

Objectives	 Educate the students about the various agricultural machines for seed bed preparation and land reclamation. Understand the various agricultural machines for sowing, planting and hitching. Develop knowledge about draft measurement and material of construction.
Pre-Requisites	Basic Mechanical Engineering
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Module-1	Farm Mechanization - Objectives, constraints and status, types and level of mechanization, needs and strategy; Farm Machinery - classifications of farm machinery as per unit operations in agricultural production, determination of field capacity, field efficiency, field machine index factors affecting field capacities and field efficiencies; calculations of cost of operations: depreciation, fixed cost, variable cost, cost of operations, comparison of ownership with hiring of machines, solution of numerical problem, selection of optimum size of machines for different farm size. Selection of matching power source for optimum machine sizes.	09 Hours
Module-2	Land Reclamation - Methods of land reclamation, details of construction and working principles of earth moving equipment like bull dozer, trencher, elevator and laser land leveller; Land Preparation Machinery - objectives of tillage, types of tillage, advantage and disadvantages of tillage; requirement and type of seed bed preparation; classification of tillage tools for primary tillage, secondary tillage, rotary tillage, deep tillage and minimum tillage; types, operations, construction and performances of MB plough, factors affecting their performances, forces acting on MB plough; types, operations, construction, performance of chisel plough and sub- soiler; types, operations, construction, performance of chisel plough and sub- soiler; types, operations, construction and performances, forces affecting their performances, forces affecting their performances of disc harrow; types, operations, construction and performances of puddler, factors affecting their performance; types, operations, construction and performances of clise plough and sub- soiler; types, operations, forces acting on disc harrow; types, operations, construction and performances of puddler, factors affecting their performance; types, operations, construction and performances of cultivators, factors affecting their performance; types, operations, construction and performances of cultivators, factors affecting performance.	09 Hours
Module - 3	Types of sowing , planting and transplanting equipment, their components - Types of seed drills, construction, functions, parameters affecting performance, types of no till drill and strip till drills, details of construction, function and parameters affecting performance; types of planters including cotton planter, vegetable planter and rice transplanter, their construction, operations and performance; different types of groundnut planter, sugarcane planter and potato planter , their construction, operations and performance; types of furrow openers - constructions and performances and suitability to different crops; seed drills and planter calibration procedure, adjustment of seed drills during operations.	07 Hours

	Total	45 hours
Module 6	Materials used in farm machinery- materials used in construction of farm machinery, engineering requirement of materials, stress strain relationship; properties of materials, Types of materials - ferrous and non–ferrous materials; heat treatment processes, procedure of achieving heat treatment, carbon iron phase diagram usefulness in farm machinery; ferrous metals: cast irons, wrought irons, their properties; steel, alloys of steel and non-metals used in agricultural machinery.	07 Hours
Module 5	Draft Measurement - Draft measurement of animal drawn and tractor drawn implements and, determination of power. Study of different attachment with tillage machines like combination tools of plough and cultivator, tillage with seeding.	08 Hours
Module - 4	Hitching System and Control - Introduction to hitching; vertical hitching : implements having hinged pull members and support wheels, implements having hinged pull members without gauge wheels, single axle implements with rigid pull member getting vertical support through wheels, Horizontal hitching of pull type implements: MB plough and disc plough, hitching for mounted implements, free link operation of 3-point hitch, restrained link operation of 3-point hitch, vertical effect of hitching on tractor,	05 Hours

Te	xt Books:				
	Principles of Farm Machinery by R.A. Kepner, Roy Bainer, and E. L. Berger, ISBN-10: 8123909772,				
1	ISBN-13 : 978-8123909776				
2	Elements of Agricultural Engineering by Dr Jagdiswar Sahay, ISBN : 9788195012022.				
2					
	Farm Machinery and Equipment by H. P. Smith, ISBN-10 : 1446517403				
3	ISBN-13 : 978-1446517406				
Re	Reference Books:				
1	Agril. Engineering through worked out examples by Dr. R. Lal and Dr. A.C. Dutta				
2	Farm Power and Machinery Engineering by Dr.R. Suresh and Sanjay Kumar, ISBN-10. 8180142116 ; ISBN-13.				
2	978-8180142116.				

CO1	Insight to the objectives, constraints and status of farm mechanization.
CO2	Introduction to different farm equipment and knowledge about Tillage and land preparation
CO3	Techniques of seeding and planting method
CO4	Hands on knowledge on hitching of implements to the power sources
CO5	Study of draft measurement of tillage equipment
CO6	Materials used in construction of farm machinery and their crop

Туре	Code	Agriculture for Engineering	L-T-P	Credits	Marks
PC	BTAG-T-PC-302		4-0-0	3	150

Objectives	1. Educate the students on various fundamental aspects f soil science, Agronomy and Horticulture.
	2. Know the crop types and their seasons.
	3. Develop knowledge on orchard
Pre-Requisites	Biology, Environmental Science
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be
	interactive with focus on problem solving activities.

Module-#	Topics	Hours
Module-1	Nature and origin of soil - soil forming rocks, minerals and their classification and composition, physical and chemical properties of soil, Soil formation, factors and processes, Soil Profile, surface soil and sub soil, classification of soils, Soil Taxonomy - Soil orders, sub orders, grate group and their characteristics; soil texture, soil structure, soil crusting, soil puddling and consistency, soil particle distribution, soil air and soil heat,	5 Hours
Module-2	Soil colloids and their significance, Soil Organic Matter, soil acidity, soil salinity, saline and sodic soil, reclamation of saline and Sodic soil, requirement of gypsum, Residual Sodium Carbonate, Essential Plant Nutrients, Deficiency Symptoms, types of inorganic fertilizers and their classification, Liquid Fertilizers, Quality of Irrigation Water: Analysis of irrigation water with respect to different parameters to study the quality of irrigation water; Interpretation of result and suitability criteria of irrigation water for different crops.	8 Hours
Module - 3	Classification of crops based on their life cycle , season of growing and commercial use, agronomic importance and special purpose; weather parameters, effect of solar radiation on crop, weather hazards and their mitigation, types of tillage and tillage implements; tilth, factors influencing tilth and modern concepts of tillage, package of practice of major kharif field crops– paddy, maize and millets; rabi crops – oilseeds and pulses, field crops-sugarcane, jute and cotton; fodder crops(both Kharif and Rabi season), integrated nutrient management .	8 Hours
Module – 4	Organic Farming and Sustainable Agriculture , Soil – water – plant relationship, evapo- transpiration methods, crop coefficients, water requirement of important field crops and their critical stages of irrigation, methods of irrigation, irrigation efficiencies, Weeds - weed ecology and classification; methods of weed management - Integrated Weed Management(IWM), Cropping System - crop rotation principles and advantages; cropping system, mixed and intercropping and relay cropping; integrated farming system	9 Hours

	TOTAL	45 Hours
Module – 6	Fertilizer application - fertigation and irrigation methods for horticultural crops, Maturity indices, estimation of maturity, types of harvesting, grading, packaging, Methods of extraction of seeds, different types of storage; Major pest and diseases of fruit crops(mango, banana, papaya, guava, litchi, citrus, ber, pomegranate etc.) and their management; Major pest and diseases of vegetable crops(tomato, brinjal, chilli, okra, potato, cole crops, cucurbits, peas and beans etc.) and their management; Major pest and diseases of ornamental plants(rose, gladiolus, marigold, tuberose, chrysanthemum etc.) and their management, Integrated Pest Management(IPM).	6 Hours
Module – 5	Soil and climatic requirements for fruits , vegetables, floriculture and plantation crops, different plant growing structures such as green house, lath house, hot bed, cold frame, other propagating frames etc. site selection, planning, lay out of different planting methods; Types of propagation , garden tools used in horticulture, their uses and maintenance, clean cultivation for orchard soil management, mulching, intercropping, cover cropping, filler cropping and weed management in orchards	9 Hours

Te	Text Books:		
1	Panda, P.K. and Swain, S.C. Practical Manual on Fundamentals of Horticulture- College of Horticulture, Chiplima, OUAT, Bhubaneswar, ISBN-10 : 9386283670 ISBN-13 : 978-9386283672		
2	Fundamentals of Agronomy by G. C. Dey, ISBN-10 : 8120404165 ISBN-13 : 978-8120404168		
Re	ference Books:		
1	 Soil pedology (1996) – J. L. Sehgal, Kalyani publication, Ludhiana, ISBN-10 : 9327284054 ISBN-13 : 978-9327284058 		
2	Horticultural crops ,New Madura Publishers, Madurai,Tamil Nadu		
3	The nature and properties of soil (2002) - N.C. Brady and Ray, R. Weill; Pearson Education Inc. New Delhi., ISBN-10. 9332519102 · ISBN-13. 978-9332519107		

CO1	To understand the basic & fundamental aspects of soil, its physical, chemical including physicochemical & biological properties.
CO2	To give knowledge regarding essential plant nutrients, deficiency symptoms
CO3	To acquaint students with agronomic importance of crops, tillage practices, package of practices of major crops and Integrated Nutrient Management (INM
CO4	To acquaint regarding organic farming & sustainable agriculture, different cropping system, Integrated Weed Management (IWM) and Integrated Farming System (IFS).
CO5	Knowledge regarding fertilizer application, fertigation and irrigation methods Training on regarding different growing procedure, propagation methods and orchard soil management
CO6	Acquaint students regarding pest and diseases of major fruits, vegetables and ornamental plants

Туре	Code		L-T-P	Credits	Marks
PE	BTAG-T-PE-301	Refrigeration and Air Conditioning	3-1-0	3	150

Objectives	1. Learning the fundamental principles and different methods of refrigeration and air
	Conditioning
	2. Comparative study of different refrigerants with respect to properties, applications
	And environmental issues.
	3. Understanding the basic air conditioning processes on psychometric charts,
	calculation of cooling load for its applications in comfort and industrial air
	conditioning.
Pre-Requisites	Basic Electronics, Mathematics
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to be
Pedagogy	interactive with focus on problem solving activities.

	Topics	Hours
Module-1	Thermodynamics properties, closed and open system, flow and non-flow processes, gas laws, laws of thermodynamics, internal energy. Application of first law in heating and expansion of gases in non flow processes. First law applied to steady flow processes. Carnot cycle, Carnot theorem. Entropy, physical concept of entropy, change of entropy of gases in thermodynamics process.	05 Hours
Module-2	Principles of refrigeration, - units, terminology, production of low temperatures, air refrigerators working on reverse Carnot cycle and Bell Coleman cycle. Vapour refrigeration-mechanism, P-V, T-S, P-H diagrams, vapor compression cycles, dry and wet compression, super cooling and sub cooling. Vapour absorption refrigeration system. Common refrigerants and their properties. Thermodynamic properties of moist air, perfect gas relationship for approximate calculation, adiabatic saturation process, wet bulb temperature and its measurement.	12Hours
Module - 3	Air Refrigeration System : Introduction, Unit of refrigeration, Coefficient of performance, Reversed Carnot Cycle, Temperature limitations, maximum COP, Bell Coleman air cycle, Simple Air Cycle System for Air-craft with problems. Vapour Compression System : Analysis of theoretical vapour compression cycle, Simple saturation cycle, sub-cooled cycle and super-heated cycle, Effect of suction and discharge pressure on performance, Actual vapour compression cycle. Problem illustration and solution. Multi-stage compression and Multi-evaporator systems : Different arrangements of compressors and inter-cooling, Multi evaporator system, Dual compression system. Calculation of cooling load and design of cold storage.	11 Hours

Module - 4	Design of evaporative cool chamber . Design of solar refrigeration system. Vapour Absorption System : Simple Ammonia - absorption system, Improved absorption system, Analysis of vapour absorption system (Specifically of analyzing coloumn and rectifier), Electrolux / Three fluid system, Lithium-bromide-water vapour absorption system, comparison of absorption system with vapour compression system. Simple Problems and solution. Thermoelectric Refrigeration: Basics and Principle. Defining the figure of Merit. (No Problem) Refrigerants: Classification of refrigerants, Properties of refrigerants, comparison of common refrigerants, uses of important refrigerants	6 Hours
Module 5	Psychrometrics : Properties of air-vapour mixture, Law of water vapour-air mixture, Enthalpy of moisture, Psychrometric chart, simple heating and cooling, Humidification, Dehumidification, Mixture of air streams.	05 Hours
Module 6	Requirements of comfort air conditioning: Oxygen supply, Heat removal, moisture removal, air motion, purity of air, Thermodynamics of human body , comfort and comfort chart, effective temperature, factors governing optimum effective temperature. Air Conditioning System: Process in air conditioning : Summer air conditioning, Winter air conditioning and year round air conditioning, Cooling load calculations	06 Hours
	Total	45 hours

Te	xt Books:
1	Kothandaraman C P Khajuria P R and Arora S C. 1992. A Course in Thermodynamics, ISBN 10:
1	0132439360 ISBN 13: 9780132439367.
	Engineering Thermodynamics. S Chand and Co. Ltd., Ram Nagar, New Delhi. 19 Mathur M L and
2	Mehta F S. 1992., ISBN-10. 8121942705 · ISBN-13. 978-8121942706
Re	ference Books:
	Engineering Thermodynamics. Tata McGraw Hill Publishing Co. Ltd., 12/4 Asaf Ali Raod, New Delhi.,
1	ISBN-10. 9789352606429 ; ISBN-13. 978-9352606429
_	New Delhi. Ballney P. L. 1994. Thermal Engineering. Khanna Publishers, New Delhi. Nag P K. 1995. ,
2	ISBN: 978-81-7409-031-7

CO1	Knowledge on unit of Refrigeration, COP, Reversed Carnot cycle, Temperature limitations, and Bell Coleman cycle
CO2	Knowledge on design of cool chambers and cold storage for agricultural commodities. Design of solar refrigeration system
CO3	Knowledge about working of Vapor Absorption Refrigeration systems.
CO4	Acquire knowledge about classification and properties of refrigerants and design of air conditioning system
CO5	Knowledge on different psychometric processes and comfort air conditioning
CO6	Knowledge on year round comfort air conditioning

Туре	Code	So	il and Water Conservation Engineering	L-T-P	Credits	Marks
PC	BTAG-T-PC-	303	and Structures	4-0-0	3	150
Objectives		1. 2. 3.	Know the different soil erosion control structures soil and moisture conservation in different situate Understand the theory behind flow through specific energy and momentum concepts to ana Prepare plan and design permanent soil as structures with cost estimation.	ares and thein ations. soil conserv alyze flow pro- nd water c	r requirements ation structure oblems. onservation en	for better s and use ngineering
Pre-RequisitesBitTeachingRoPedagogyin		Basic (Civil Engineering			
		Regula: interact	r classroom lectures with use of ICT as and whe ive with focus on problem solving activities.	n required, s	essions are pla	nned to be

Topics	Hours
Soil and water erosion – introduction, causes and types, factors affecting and effects of erosion; Soil loss estimation – universal soil loss equation (USLE) and determination of their various parameters; application and limitations of USLE; Modified soil loss equation (MUSLE) and RUSLE; Rainfall erosivity – estimation of erosivity from rainfall data by KE>25 and EI30 methods; Soil erodibility - topography, crop management and conservation practice factors; Measurement of soil erosion by runoff plots and by soil samples; Water erosion – mechanics and factors affecting or erosion; forms of water erosion, Gullies and their classification, stages of gully development;	12 Hours
Water erosion control measures– agronomical measures, tillage practices and conservation tillage; Mulching; Engineering measures and their planning and layout, Contour stonewall and trenching and their suitability for use;	05 Hours
Gully and ravine reclamation Principles of gully control - vegetative measures, brush wood dams, loose rock fill dams; Temporary structures of gully control, permanent gully control structures; Grassed waterway Wind erosion and control measures, Land use capability classification objectives of classification, capability, limitation, land capability unit, land capability sub-classes; Land use capability classification by United States Department of Soil Conservation Service, limitations of different LUCC;	09 Hours
	TopicsSoil and water erosion – introduction, causes and types, factors affecting and effects of erosion; Soil loss estimation – universal soil loss equation (USLE) and determination of their various parameters; application and limitations of USLE; Modified soil loss equation (MUSLE) and RUSLE; Rainfall erosivity – estimation of erosivity from rainfall data by KE>25 and EI30 methods; Soil erodibility - topography, crop management and conservation practice factors; Measurement of soil erosion by runoff plots and by soil samples; Water erosion – mechanics and factors affecting or erosion; forms of water erosion, Gullies and their classification, stages of gully development;Water erosion control measures– agronomical measures, tillage practices and conservation tillage; Mulching; Engineering measures and their planning and layout, Contour stonewall and trenching and their suitability for use;Gully and ravine reclamation Principles of gully control - vegetative measures, brush wood dams, loose rock fill dams; Temporary structures of gully control, permanent gully control structures; Grassed waterway Wind erosion and control measures, Land use capability elassification objectives of classification, capability, limitation, land capability unit, land capability sub-classes; Land use capability classification by United States Department of Soil Conservation Service, limitations of different LUCC;

Module - 4	 Module - 4 Sedimentation in tanks and reservoirs Sedimentation, sources of sedimentation, factors responsible for sedimentation; effects of sedimentation, types of sediment load, sediment transportation, sediment delivery ratio, trap efficiency; Estimation of sedimentation, bed load estimation, suspended load sampling; Measurement of sedimentation - can type, bottle type, bed load sampling, box type, pan type, pit type; Sedimentation in reservoirs - factors affecting sedimentation, rate of reservoir sedimentation, silt monitoring and storage loss in tanks and reservoirs, reservoir sedimentation control 	
Module 5	Measurement of sedimentation - can type, bottle type, bed load sampling, box type, pan type, pit type; Sedimentation in reservoirs - factors affecting sedimentation, rate of reservoir sedimentation, silt monitoring and storage loss in tanks and reservoirs, reservoir sedimentation control	06 Hours
Module 6	Water Harvesting and Soil conservation Structures Water harvesting techniques and structures-farm ponds, percolation ponds, nala bunds, tanks and sub surface dykes; soil erosion control structures - check dams, drop, chute and drop inlet spillways - design requirements, planning for design and design procedures	06 Hours
	Total	45 hours

Te	t Books:						
1	Schwab, G.O., Frevert, R.K., Edministe, T.W. and Barnes, K.K. 1981. Soil & Water Conservation Engineering. John Willey and sons, New York.						
	Murthy, V.V.N. 1998. Land & Water management Engineering. Kalyani Publishers, Ludhiana, ISBN-	10.					
2	932721465X ; ISBN -13. 978-9327214659						
Re	erence Books:						
	Suresh, R.1997. Soil & water Conservation Engineering . Standard Publishers Distributors, Delhi.,						
1	ISBN 8180140008, 9788180140006						
	Das, G.2000. Hydrology and Soil Conservation Engineering. Standard Publishers Distributors , Delhi,						
2	ISBN-10 8120335864						
	ISBN-13 978-8120335868						

CO1	Understand water and wind erosion and their mechanisms.
CO2	Know various agronomical and mechanical measures for controlling soil erosion and moisture
	conservation
CO3	Develop analytical thinking and problem solving skills in soil and water conservation engineering
	problems.
CO4	To measure and estimate soil loss and sedimentation using different techniques

Туре	Code	Organizational Behavior	L-T-P	Credits	Marks
HS	BTBS-T-HS-301	Organizational Denavior	3-0-0	3	150

Objectives	To understand the human interactions in an organization find what is driving it and		
	influence it for getting better results for attaining business goals		
Pre- Self-motivation and knowledge on human strategy			
Requisites			
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are		
Pedagogy	planned to be interactive with focus on real-life problem-solving activities.		

Module-#	t Topics		
Module-1	Focus And Purpose : Definition, need and importance of organizational behavior – Nature and scope –Evolution of Organizational behavior- Organizational behavior models.	09 Hours	
Module-2	Personality – types – Factors influencing personality – Theories – Ice-burg Model Learning – Types of learners – The learning process – Learning theories – Organizational behavior modification. Misbehavior – Types – Management Intervention. Emotions – Emotional Intelligence Motivation – importance – Types – Theories of Motivation- Effects on work behavior.	13 Hours	
	Perceptions – Importance – Factors influencing perception – Interpersonal perception- perceptual Process.		
Module - 3	Communication: Importance, Types, Barriers to communication, Communication as a tool for improving Interpersonal Effectiveness Groups In Organization: Nature, Types, Why do people join groups, Group Cohesiveness & Group Decision Making- managerial Implications, Effective Team Building Leadership: Leadership & management, Theories of leadership- Trait theory, Behavioral Theory, Contingency Theory, Leadership & Followership, How to be an Effective Leader Conflict: Nature of Conflict & Conflict Resolution	13 Hours	
Module - 4	Dynamics Of Organizational Behavior :Organizational culture and climate – Factors affecting organizational climate –Importance.Organizational change – Importance – Stability Vs Change – Proactive Vs Reactionchange – the change process – Resistance to change – Managing change.Stress – Work Stressors – Prevention and Management of stress – Balancing work andLife.Organizational development – Characteristics – objectives –. Organizational	05 Hours	
	Total	40 Hours	

Te	xt Books:
1	Organizational Behavior : <u>Allison Sheerest</u> , <u>Rachael Collinson</u> , <u>Louis Bevoc</u> · 2017
2	A Textbook of Organizational Behavior with Text and Cases by Gupta C.B.
Re	ference Books:
1	Organizational Behaviour by Stephen P. Robbins Authors: Stephen P. Robbins, Timothy A. Judge, Neharika Vohra Publisher: Pearson
2	Essentials of Organizational Behavior Book by Stephen Robbins Authors: Stephen P. Robbins, Timothy A. Judge Publisher: Pearson Edition: 2019
3	Organisational Behavior Book by K. Aswathappa Author(s): K. Aswathappa Publisher: Himalaya Publishing House Edition: 2018
4	Organizational Behavior Mcshane, S. L/ Glinow, M. A. V. TMH

Туре	Code	Engineering Economics	L-T-P	Credits	Marks
HS	BTBS-T-HS-302	Engineering Economics	3-0-0	3	150

Objectives	This course will expose students to economic theory through the use of mathematical			
	modeling with a focus on economic decision making for engineers			
Pre-Requisites	Mathematics			
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are			
	planned to be interactive with focus on real-life problem-solving activities.			

Module-#	Topics	Hours
Module-1	Engineering Economics- Nature, Scope, Basic problems of an economy, Micro Economics and Macro Economics. Demand - Meaning of demand, Demand function, Law of Demand and its exceptions, Determinants of demand, Elasticity of demand & its measurement (Simple numerical problems to be solved), Demand Forecasting – Meaning Supply Meaning of supply, Law of supply and its exception, Determinants of supply, Elasticity of supply, Determination of market equilibrium (Simple numerical problems to be solved).	
Module-2	Production - Production function, Laws of returns: Law of variable proportion, Law of returns to scale Cost and Revenue Concepts - Total Costs, Fixed cost, Variable cost, Total revenue, Average revenue and Marginal revenue, Cost-Output Relationships in the Short Run, and Cost-Output Relationships in the Long Run, Analysis of cost minimization.	
Module - 3	Market - Basic understanding of different market structures, Determination of equilibrium price under perfect competition (Simple numerical problems to be solved), Break Even Analysis-linear approach (Simple numerical problems to be solved).	
Module - 4	Time Value of Money- Interest - Simple and compound, nominal and effective rate of interest, Cash flow diagrams, Principles of economic equivalence. Evaluation of Engineering Projects-Present worth method, Future worth method, Annual worth method, Internal rate of return method, Cost benefit analysis for public projects. Depreciation- Depreciation of capital assert, Causes of depreciation, Methods of calculating depreciation - Straight line method, Declining balance method, SOYD method, After tax comparison of project.	
Module- 5	Inflation-Meaning of inflation, types, causes, measures to control inflation. National Income-Definition, Concepts of national income, Method of measuring national income. Banking -Commercial bank, Functions of commercial bank, Central bank, Functions of Central Bank.	
	Total	

Tex	Text Books:					
1	Principles of Economics by Deviga Vengedasalam and Karaunagaran Madhavan, Oxford					
2	Riggs, Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India					
Ref	ference Books:					
1	C. S. Park, Contemporary Engineering Economics, 6th Edition, Pearson Education, 2015.					
2	Engineering Economy by William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson					
3	R.Paneer Seelvan, "Engineering Economics", PHI					
4	Ahuja,H.L., "Principles of Micro Economics", S.Chand & Company Ltd					
Course Outcomes: At the end of this course, the students will be able to:						
CC	CO1 Remembering: Define the basic concept of micro and macroeconomics, engineering economics and					

 their application in engineering economy.

 CO2
 Understanding: Evaluate numerically the effects of changes in demand and supply on price determination of products and services.

 CO3
 Analyze: the macroeconomic environment and financial systems of the country and its impact on

	business, society and enterprise.
CO4	Develop: the ability to account for time value of money using engineering economy factors and
	formulas.
CO5	Apply: knowledge of mathematics, economics and engineering principles to solve engineering
	problems and to analyze decision alternatives in engineering projects considering upon depreciation,
CO6	Remembering: Define the basic concept of micro and macroeconomics, engineering economics and

their application in engineering economy.

Туре	Code	Object Oriented Programming using	L-T-P	Credits	Marks
ES	BTCS-T-ES-301	JAVA	4-0-0	3	10

Objectives	To expose in the field of Programing Language (Core java)
Pre-Requisites	Knowledge of programming in 'C'
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to
Pedagogy	be interactive with focus on real-life problem-solving activities.

Module-#	Module-# Topics			
Module-1	Object oriented paradigm: Evolution of programming paradigm, structured versus object-oriented development, Introduction to Object oriented programming concepts: Objects, classes, encapsulation and abstraction, inheritance, polymorphism, dynamic binding, message passing. Executing the program, How Java program executes? What is JVM and its significance in executing a program? Architecture of JVM. Understanding First Program and a step forward, understanding every term of the program, Java Tokens, Data types, Operators, what are Operators? Different types of Operators, Typecasting, Control Structures and Arrays, Different types of control structures, Conditional Statements, Loops/ Iterators, Jumping Statements, Java Arrays, Multidimensional Arrays, Taking Input from keyboard, Command Line Arguments, Using Scanner Class, Using Buffered Reader class.			
Module-2	Object and Classes: Specifying and using classes, access specifies: private, public, functions and data members, default arguments, function overloading, friend functions, static members. Objects: memory considerations for objects, new and delete operators. Constructors - default constructor, parameterized constructor, constructor with dynamic allocation, copy constructor, destructors. Inheritance: Derived and base classes, Class hierarchies, public, private, and protected derivations, constructors in derived classes, destructors in derived classes, constructors' invocation and data members initialization in derived classes, classes within classes, virtual base class.			
Module-3	Use of super keyword in Java, Polymorphism, Understanding Polymorphism, Types of polymorphism, Significance of Polymorphism in Java, Method Overloading, Constructor Overloading, Method Overriding, Dynamic Method Dispatching. String Manipulations: Introduction to different classes, String class, String Buffer, String Builder, String Tokenizer	8 Hours		
Module-4	Concept of Wrapper Classes, Introduction to wrapper classes, Different predefined wrapper classes, Predefined Constructors for the wrapper classes. Conversion of types from one type (Object) to another type (Primitive) and Vice versa, Concept of Auto boxing and unboxing. Data Abstraction: Basics of Data Abstraction, Understanding Abstract classes, Understanding Interfaces, Multiple Inheritance Using Interfaces, Packages, Introduction to Packages, Java API Packages, User-Defined Packages, Accessing Packages.			
Module-5	Exception handling and Templates: Introduction to exception handling, throw point outside try, Multiple catch, Catch-all, throwing objects. Introduction to templates, class templates, function templates. Files and Streams: Introduction to file handling, hierarchy of file stream classes, opening and closing of files, file modes, file pointers and their manipulators, sequential access, random access.			
	10(a)	40 nours		

Text	Text Book			
1.	Programming in Java. Second Edition. OXFORD HIGHER EDUCATION. (SACHIN MALHOTRA/SAURAV CHOUDHARY)			
2.	CORE JAVA For Beginners. (Rashmi Kanta Das), Vikas Publication			
Refer	rence Books			
1	JAVA Complete Reference (9th Edition) Herbalt Schelidt			
2	Effective Java 3rd Edition by Joshua Bloch (Author)			
3	Java For Dummies 6th Edition by Barry A. Burd (Author)			

CO1	To understand the Object-oriented programming concepts and every term of the program.
CO2	To test and execute the programmes by Object and Classes and implement inheritance property.
CO3	To implement polymorphism and string manipulation.
CO4	To determine data abstraction and wrapper classes to achieve code reusability.
CO5	To understand the hierarchy of file stream classes and the concept of exception handling.

Туре	Cod	le	ENVIRONMENTAL ENCINEERING	L-T-P	Credits	Marks
MC	BTMC-T-M	C-301	ENVIKONMENTAL ENGINEERING	2-0-0	0	150
Objectiv	7 es	To Asse knowled To Make valid con To Ider Engineen To Dev compone public he To App solution	ss societal, health, safety and legal issues by ap ge. e use of their knowledge to interpret the data by nelusions. htify, formulate, review research literature and ring problems using fundamentals of mathematics elop solutions for Environmental Engineerin ents and processes to meet the specified needs wi ealth and safety. ly the knowledge of mathematics, Science an of problems of Environmental Engineering.	plying Env y experime analyze s, sciences ng probler th appropri- nd Engine	vironmental E ental analysis complex Env and engineeri ns and desi iate considera cering fundan	Engineering to provide rironmental ng. gn system tion for the nentals for
Pre-Requisites Knowle		Knowled	lge of Science and technology in Secondary level			
Teaching Pedagogy Regular interact		Regular interactiv	class room lectures with use of ICT and when re we with focus on problem solving activities.	quired, ses	sions are plan	nned to be

Module	Topics	Hours
Module -1	Components of Earth System: Lithosphere, Cryosphere, Atmosphere, Hydrosphere, Biosphere and Outer space. Ecological concepts and natural Resources: Ecological perspective and value of environment, Environmental auditing, Biotic components, Levels of organizations in environment Ecosystem Process: Energy, Food chain, Environmental gradients, Tolerance levels of environmental factor.	06 Hours
Module -2	Environmental Pollution: Definition, Causes, effects and control measures of: Water pollution, Air pollution, Noise pollution, Soil pollution, Marine pollution, Thermal pollution, Nuclear hazards Environmental Issues: Climate change, Global warming, Acid rain, Ozone layer depletion, Sustainable development, Bio gas, Natural gas, Biodiversity, Urban problems related to energy, water scarcity, Water conservation, rain water harvesting, artificial recharge, watershed management, carbon trading, carbon foot print National Ambient Air quality Standards, Noise standards, Vehicle emission standards	10 Hours
Module -3	Natural Resources covering Renewable and Non-renewable Resources, Forests, water, minerals, Food and land (with example of one case study); Energy, Growing energy needs, energy sources (conventional and alternative). Hydrological cycle, water balance, energy budget, precipitation, infiltration, evaporation and evapotranspiration.	06 Hours
Module -4	Drinking water standard (IS 10500), Water Quality Criteria and wastewater effluent standards Water treatment: Water sources and their quality, Lay out of a water treatment plant and working of each unit/ principles of each process i.e. Screening, Aeration, Sedimentation, coagulation, flocculation, Filtration, Disinfection.	06 Hours

Module- 5	Miscellaneous treatment: Removal of color, tastes and odour control, removal of iron and manganese, fluoridation and defoliation. Advanced water treatment: Ion exchange, electro-dialysis, RO, desalination Working principles of ready-made water filter/purification system commercially available Lay out of a wastewater treatment plant and working of each unit.	6 Hours
Module-6	Solid waste management: Source, classification and composition of Municipal Solid Waste (MSW), Storage and transport of MSW, MSW management, Waste minimization of MSW, Reuse and recycling, Biological & thermal treatment (principles only), land fill Biomedical Waste management – sources, treatment (principles only) and disposal Hazardous Waste Management- Introduction, Sources, Classification, treatment (principles only) Introduction to e-waste management. Environmental impact Assessment: Project screening for EIA, Scoping studies Environmental policies and acts (Air, Noise, Water, Forest, E-waste, Hazardous waste acts).	10 Hours
	Total	44 Hours

Text Book:

1. Environmental Engineering, G. Kiely, TMH, 2007

Reference Books:

- 1. Environmental Engineering, H.S. Peavy, D.R.Rowe and G. Tchobanoglous, McGraw Hill, 1985.
- 2. Introduction to Environmental Engineering, M. L. Davis and D. A Cornwell, McGraw Hill International, 2005.

CO1	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.
	Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions
CO2	
	Identify, formulate, review research literature and analyze complex Environmental Engineering problems
CO3	using fundamentals of mathematics, sciences and engineering.
CO4	Develop solutions for Environmental Engineering problems and design system components and processes
	to meet the specified needs with appropriate consideration for the public health and safety.
CO5	Apply the knowledge of mathematics, Science and Engineering fundamentals for solution of problems of
	Environmental Engineering.
CO6	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.

Туре	Code		L-T-P	Credits	Marks
SC	BTSC-T-SC-301	Employability Enhancement Training-I	2-0-0	1	150

Objectives	To significantly raise the employability of the students to a level where they are able to clear campus selection process and at the same time develop an attitude of constant self-improvement throughout their career
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to
Pedagogy	be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours		
Module-1	Introduction to pre- placement talk, Speed maths (speed & accuracy in Addition Subtraction, Multiplication, Fractions, Percentage, Squares, Cubes, Square Roots, Cube Roots, etc.), Number system (number tree, factors & factorials, base change,finding las digit & last two digits of indices, LCM & HCF,), Venn Diagrams (visually organize information, compare two or more choices, solve complex mathematical problems compare data sets, to reason through the logic).	5 Hours		
Module-2	Syllogism (Introduction to syllogisms, Statements of syllogisms, Application of Venn diagrams Logical deduction), Blood Relationship (Dialogue/ Conversation Based, Based on puzzles, coding decoding), Age based problems (Ratio and Sum of Ages Given, Ratio ∏ of Ages Giver under Problems on Ages, Ratio of Present and Future Ages Given, Ratio of Past &Present Ages Given).Ratio Proportion(direct proportion, inverse proportion, continued proportion).			
Module-3	Percentage (basic concepts, comparison of percentage, successive percentage), Alligation mixture Introduction to Data interpretation (analytical methods to review data), Introduction to Data sufficiency(checking and testing a given set of information).	5 Hours		
Module-4	Percentage(Basic, Comparison of two, Successive ,Product constancy ratio), Profit &Loss(Profit, Loss, Cost Price, Selling Price, Marked Price), Simple Interest & compound interest, Puzzles(Floor, Scheduling, Double line up, Linear, Square, <i>Box</i>)			
	Total	20Hours		

Te	Text Books:				
1	Quantitative aptitude by R S Aggarwal				
2	Quantitative Aptitude for CAT by Arun Sharma				
Re	Reference Books:				
1	Fast Track Objective Arithmetic by Arihant Publications				

CO1	To help students explore their values and career choices through individual skill assessments
CO2	To make realistic employment choices and to identify the steps necessary to achieve a goal
CO3	To develop and practice self-management skills for the work site
CO4	To explore and practice basic communication skills
CO5	To learn skills for discussing and resolving problems on the work site
CO6	To assess and improve personal grooming

Туре	Code		Farm Machinery and Equipment I	L-T-P	Credits	Marks	
Р	BTAG-P-PC-301		Lab	0-0-2	1	10	
Objectives		1.Pra	1.Practical knowledge on machinery used from land preparation				
		2. Ac	equire knowledge for seeding / planting				
		3. Kr	now about hitching system				
Pre-Requisites		Basic	e Mechanical Engineering				
Teaching		Field	d demonstrations and operations on farm equipment	t and mac	hine		
Peda	gogy						

Expt No	Торіс				
1	Familiarization with different farm implements and tools				
2	Construction details, adjustments and working of M.B. plough				
3	Construction details, adjustments and working of Disc plough				
4	Construction details, adjustments and working of Disc harrow				
5	Construction details, adjustments and working of cultivators and puddler				
6	Construction and working of Rotavator and other rotary tillers				
7	Field operation of paddy transplanter				
8	Field operation of vegetable planter				
9	Study of different weeders and their use				
10	Study and field operation of seed-cum-fertilizer drills				
11	Study and field operation of planters				
12	Calibration of seed cum fertilizer drill and planters				
13	Study of lawn mower				
14	Study of hitching system				

Text B	Text Books:				
1	Principles of Farm Machinery by R.A. Kepner, Roy Bainer, and E. L. Berger				
2	Farm Machinery – an Approach by S. C Jain & Grace Phillips				
3	Agril. Engineering through worked out examples by Dr. R. Lal and Dr. A.C. Dutta				
4	Farm Power and Machinery Engineering by Dr.R. Suresh and Sanjay Kumar				
5	Farm Machinery and Equipment by H. P. Smith				

Туре	Cod	<u>,</u>	Agriculture for Engineering Lab	L-T-P	Credits	Marks
Р	BTAG-P-PC-302			0-0-2	1	100
Objectives		Knov diffe	w the crop types and their seasons, effect of we rent tillage practices in the crop field.	ather parame	eters on crop	production,
Pre-Requisites		Biolo	ogy, Environmental Science			
Teacl	hing	Field	l demonstrations			
Pedagogy						

Expt No	ot No Topic					
1	Collection of soil sample from the field, its processing and preservation in lab					
2	Determination of moisture content, bulk density, particle density and pore space in soil					
3 Determination of soil texture by feel method/Bouyoucos hydrometer method						
4	Determination of organic carbon, nitrogen, phosphorus, potassium in soil					
5 Determination of $CO_3^{=}$, HCO_3^{-} and CI^{-} , Ca^{++} and Mg^{++} , $SO_4^{=}$ in irrigation water						
6 Determination of Na ⁺ and K ⁺ content in irrigation water						
7 Identification of major and minor nutrient deficiency symptoms of crops in the field						
8	Identification of cereals, pulses and oil seed crops and their varieties					
9	Identification of seeds, manures, fertilizers and herbicides					
10	Study of fertilizer application methods					
11	Practice of ploughing, sowing, puddling, intercultural operations, top dressing etc.					
12	Judging maturity time for harvesting of crop					

Text Books:					
	Practical manual for Introduction to soil science-P. K. Das, A. K. Dash, and G. H.				
1	Santra, Department of Soil Science & amp; Agricultural Chemistry, Orissa University of				
	Agriculture & amp; Technology, Bhubaneswar				

Туре	Code	OOPS using JAVA Lab	L-T-P	Credits	Marks
ES	BTCS-P-ES-301		0-0-2	1	100

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
Teaching	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real-
Pedagogy	life problem-solving activities.

Module-#	Name of the experiment	Hours
Experiment-1	Introduction, compiling and executing java program	2 Hours
Experiment-2	Data types, variables and design control structures	2 Hours
Experiment-3	Loop control structures	2 Hours
Experiment-4	Introduction to object and class	2 Hours
Experiment-5	Inheritance, polymorphism and abstract class	2 Hours
Experiment-6	Package	2 Hours
Experiment-7	Interfaces, Inner classes	2 Hours
Experiment-8	Exception handling and java threads	2 Hours
Experiment-9	Java applets	2 Hours
Experiment-10	AWT and swings	2 Hours
Experiment-11	Wrapper Class	2 Hours

Text Books:

1 Database Management Systems Lab Manual, Department of CSE, GIFT, Bhubaneswar

Туре	Code	SEMINAR-I	L-T-P	Credits	Marks
PS	BTPS-P-PS-301		0-0-3	1	100

Objectives	 To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
Pre-Requisites	Knowledge of Speaking with globally accepted language and subject analysis.
Teaching Pedagogy	Regular seminar presentation and evaluation with record keeping.

METHOD OF EVALUATION:

- 1. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for duration of about 8 to 10 minutes.
- 2. In a session of one period per week, 5 students are expected to present the seminar.
- 3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.
- 4. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report.
- 5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 6. Evaluation is 100% internal.

CO1	Outline the topics on modern technology; prepare implementation of the same as the presentation.
CO2	Understanding the technologies used by extracting the new things to be implemented by reviewing the journals/research
CO3	Sketch the application of the technology for the use of the mankind.
CO4	Analyse and correlate the new technology with the subject of interest for further study.
CO5	Evaluate, plan and reframe the technology with the communication skills for a better explanation and presentation.
CO6	Modify and design the concept into the realistic world.

Туре	Code	Evaluation of Summer Internship-1	L-T-P	Credits	Marks
SC	BTSC-P-SC-301		0-0-3	1	100

Objectives	1. To encourage the students to study advanced engineering developments				
	2. To prepare and present technical reports.				
	3. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.				
Pre-Requisites	Knowledge of Speaking with globally accepted language, subject analysis, practical implementation.				
Teaching	Regular contact with interns and evaluation with record keeping.				
Pedagogy					

METHOD OF EVALUATION:

- 1. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for duration of about 8 to 10 minutes.
- 2. In a session of one period per week, 5 students are expected to present the seminar.
- 3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.
- 4. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report.
- 5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 6. Evaluation is 100% internal.

CO1	State the functioning of organization and observe changes for self-improvement.
CO2	Explain how the internship placement site fits into a broader career field.
CO3	Apply appropriate workplace behaviours in a professional setting.
CO4	Solve real life challenges in the workplace by analysing work environment and conditions, and selecting appropriate skill
CO5	Evaluate the internship experience in terms of personal, educational and career needs.
CO6	Develop ideas for suitable start-ups to become successful entrepreneur.

Fourth Semester

Туре	Code	Farm Machinery and Equipment II	L-T-P	Credits	Marks
PC	BTAG-T-PC-401		4-0-0	3	150

Objectives	 Educate the students about the farm machineries used in agricultural production from intercultural to threshing Know about construction and operation of different machines for hay harvesting and combine. Understand the students about the operating parameters and performance of the machines for root crop harvesting and others.
Pre-	Farm Machinery and Equipment related to different field preparation method and procedures
Requisites	
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive
Pedagogy	with focus on problem solving activities, and field visit to nearest farm and any agriculture mechanization fair.

Module-#	Topics	Hours
Module-1	Intercultural Equipment- Study of Weeding and weed control equipment, types, components and functions; Fertilizer application equipment- Types, soil amendment, placement of fertilizers, dry commercial fertilizer, metering devices, factors affecting discharge rate and uniformity of distribution, liquid fertilizer, granular pesticides; Plant protection equipment; pest control equipment, their construction and operation, drift, factors affecting drift, types atomizing devices (nozzles), pumps for sprayer, agitation of spray materials, safety precautions during spraying, duster: types, construction and operations; calibration of sprayer and numerical problems	8 hours
Module-2	Study of harvesting operations- harvesting methods and terminologies; Types of mowers and their components: Cutter bar mower, Rotary mower, flail mower; Cutterbar and its components, registration, alignment and lead of cutter-bar, knife drive system, cutter-bar balancing and vibration control, cutter-bar, inertial forces, counterbalancing, terminology, cutting pattern; Force analysis of pitman drive cutter-bar and numerical problems; Reaper: types, components of reaper- engine, power transmission unit, types of drive to cutter-bar mechanism, lifting and gathering unit, cutting and windrowing unit; Cutter-bar parameters affecting performance of reaper, cutting force, power requirement for cutting and total power requirement; Reaper binder and windrower: types, operation and performance and numerical problems	8 hours
Module-3	Importance of hay conditioning , methods and calculation of moisture content, Forage harvesters- types, their components; gathering unit, conveying and feeding unit, chopping and impelling unit, types of cutter head, performance parameters; Balers-Types, construction and operation and numerical problems; Chaff cutters - Manual and mechanical chaff cutter: components, operation, length of cut, capacity, location of flywheel; Shape of knife and power requirement and numerical problems; New developments and innovations for hay management in-situ for Indian conditions	08 hours

 Agril. Engineering through worked out examples by Dr. R. Lal and Dr. A.C. Dutta Farm Power and Machinery Engineering by Dr.R. Suresh and Sanjay Kumar, ISBN-10. 8180142116 ; ISBN-13 			
Reference	Books:		
3 ISE	Farm Machinery and Equipment by H. P. Smith, ISBN-10 : 1446517403 3 ISBN-13 : 978-1446517406		
2 Eleme	2 Elements of Agricultural Engineering by Dr Jagdiswar Sahay, ISBN : 9788195012022.		
Principles of Farm Machinery by R.A. Kepner, Roy Bainer, and E. L. Berger, ISBN-10 : 8123909772, 1 ISBN-13 : 978-8123909776			
Text Book	(5:		
	Total	45 Hours	
Module 6	Cotton Harvesting : cotton harvesting stage, pre-harvest treatments, harvesting requirement, types of harvesters: Cotton picker and stripper; Cotton picker: picking mechanism: drum type spindle mechanism and chain belt type; conveying and carrying; Cotton Stripper: Principles of stripping, types of cotton strippers and their working principles, effect and cost of mechanical harvesting of cotton and numerical problems; vegetables and fruits harvesters: Problems of mechanical harvesting, Harvesting functions, Methods and principles of vegetables and fruits harvesters: Uprooting, cutting, combing, stripping, vibration and threshing; Types of harvesters: Carrot, cabbage, strawberry, snap bean, tomato, harvesting of fruits: methods of harvesting, types of har	05 Hours	
Module 5	advantages and economics; combine troubles and troubleshooting Root crop harvesting equipment- Potato harvester/digger: Methods of harvesting, Functions and components of different types of potato harvester, factors affecting performance of potato harvester; Groundnut: Types of groundnut diggers/harvester, components of groundnut digger, basic operations in groundnut digging, factors affecting performance of groundnut digger; Maize harvesting and shelling- Snapper, husker, sheller and combine	08 Hours	
Module-4	threshing, power requirement in threshing, Types of threshing drums and their applications, determination of length of drum; Types of threshers- tangential and axial, performance characteristics of axial and tangential threshers; Machine factors affecting performance, threshing losses, performance index and numerical problems; Combine Harvesters- Grain Combine: Components and operation of combine harvester: Header unit : reel and its adjustment, cutter bar, adjustment and drive to cutter-bar; feeding unit; threshing unit; principle and types of threshing methods, performance criteria of threshing methods like axial and cross flow separating unit; straw walker, shoes, blower, factors affecting their performance; Combine harvester losses and performances ; header, threshing, rack, shoe losses; factors affecting threshing performance and numerical problems; Straw combine: Types of straw combines; operation, performances,	8 hours	

Туре	Code	Engineering Properties of	L-T-P	Credits	Marks
PC	BTAG-T-PC-402	Agricultural Produce	4-0-0	3	150

Objectives	1. Acquire knowledge on the physical and thermal properties of biomaterials.	
	2. Knowledge on frictional, aerodynamic and rheological properties of agricultural	
	produce	
	3. Understanding on electromagnetic spectrum, electrical and dielectric properties	
Pre-Requisites	Physics and Environmental science	
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are	
Pedagogy	planned to be interactive with focus on real-life problem-solving activities.	

Module-#	Topics	Hours
Module-1	General Introduction and Different Properties General Introduction- classification and importance of engineering properties of agricultural produce, Different Properties: Physical properties- size, shape, roundness, sphericity, particle and bulk volume, density, porosity, specific gravity and surface area of grains and fruits and vegetables, methods of their measurement,	08 Hours
Module-2	Thermal properties- basics of mode of heat transfer, heat capacity, specific heat, thermal conductivity, methods of their measurement, thermal diffusivity, surface heat transfer coefficient, freezing point of depression and boiling point of elevation, heat of respiration, coefficient of thermal expansion, thermal emissivity.	05 Hours
Module- 3	Friction in agricultural materials - static friction, kinetic friction, internal friction, angle of repose, methods of their measurement, rolling resistance, flow of bulk granular materials. Aero Dynamics- concept and basics of aerodynamic properties drag coefficient and terminal velocity, methods of their measurement.	08 Hours
Module - 4	Basic concepts of Rheology- stress, strain, shear rate, analysis of force deformation curve, bio-yield point, rupture point, elasticity, plasticity, degree of elasticity, Rheological properties- classical ideal materials, ideal elastic behavior, elastic properties, young's modulus , shear modulus, bulk modulus, Poisson's ratio; ideal plastic behavior, ideal viscous behavior, viscosity (kinematic and absolute) and its measurement	08 Hours
Module - 5	Visco-elasticity , Electromagnetic, Electrical and Dielectric Properties - Visco-elasticity- Basic mechanical elements, spring and dashpot, Maxwell model, kelvin model, electrical equivalence of mechanical models; Newtonian and non-Newtonian fluid , pseudoplastic, dilatant, thixotropic, rheopectic and Bingham plastic foods, flow curves.	08 Hours
Module - 6	Electromagnetic spectrum- Details of electromagnetic spectrum and the use, principle of colour measurement, hue, chroma and value; Electrical and dielectric properties- Measurement methods of resistance, capacitance, dielectric loss factor, loss tangent, and dielectric constant; Application of engineering properties in handling processing machines and storage structure.	08 Hours
	Total	45 Hours

Та	Tavt Daaka			
10	Suresh Chandra, Samsher, Suneet Kumar Goval 2020, New India Publishing Agency			
1	Sinchal OB and Samual DVK, 2002. Engineering Properties of Dialogical Materials. Sanai			
2	Prakasan.NewDelhi			
3	Mohesin, N.N. 1980. Physical Properties of Plants & Animals. Gordon & Breach Science Publishers, New York.			
Reference Books:				
1	Rao, M.A. and Rizvi, S.H., 1995. Engineering Properties of Foods. Marcel Dekker Inc. New			
1	York.			
2	Stroshine, R. 1998. Physical Properties of Agricultural Materials and Food Products.			
	Course Manual. Purdue University. USA			
3	Serpil S and Servet G S.2005. Physical Properties of Foods. (Springer Science+Business			
0	Media, LLC, 233 Spring Street, New York,			

CO1	Understanding the classification and importance of engineering properties of agricultural produce
CO2	Knowledge about the Physical properties of biomaterials
CO3	Knowledge about the Frictional properties of biomaterials
CO4	Acquire knowledge on Thermal and Frictional properties of biomaterials
CO5	Understanding the basics properties
CO6	Understanding on electromagnetic spectrum, electrical and dielectric properties

Hydraulics

Objectives	1. Know different engineering properties like moisture content, density, void ratio, porosity, grain size analysis etc.
	2. Understand the properties of fluid.
	3. To impart knowledge to the students on various principles of fluid mechanics and hydraulic machines.
Pre-Requisites	Basic mechanical and Civil Engineering
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module 1	Index Properties and Soil Consistency: Index Properties – Introduction, phase diagram, definitions and relations, physical and index properties of soil, Particle size distribution, grain Size distribution curve, soil indices. Soil Consistency - Plastic limit, liquid limit, shrinkage limit; Soil Stress: Stress in Soils- Effective and neutral stress, stress in soil, Boussinesq and Westerguard's analysis, new mark's influence chart, stress distribution and diagrams; Shear Stress and Mohr's stress circle, direct shear stress, triaxial test and	08 Hours
Module 2	vane shear test, Numerical Examples on different tests. Compaction and Consolidation - Compaction of soils, standard and modified proctor test, abbot's compaction test, jodhpur mini compaction test, field compaction methods; Consolidation of soils, Terzaghi's theory of one dimensional consolidation, spring analogy, consolidation test, calculation of void ratio and coefficient of volume change, Taylor's and Cassagrande method; Earth Pressure and Stability of Slopes - Active and passive earth pressure, Rankine's theory of earth pressure for cohesive soils; Stability of slopes, stability analysis of infinite and finite slope, Taylor's stability number, friction circle method.	08 Hours
Module 3	Fluid Properties, Fluid Pressure and its Measurement - Ideal and real fluids, density, specific weight, specific volume, specific gravity, viscosity, units of measurements; pressure, intensity of pressure, pascal's law, pressure head, transmissibility of liquid pressure, Bramah's press or hydraulic press, atmospheric pressure, negative or vacuum pressure, absolute pressure, pressure gauges and manometers(barometer, piezometer, manometer, differential u-tube manometer, inverted manometer	6 Hours

Module 6	Flow through simple and compound pipes - Pipe flow, minor and major hydraulic losses through pipes, fluid friction, Darcy Weisbach equation of loss of head in pipes, hydraulic gradient and total energy line; Pipes in series, pipes in parallel, flow through network of pipes- branching of pipes; Power transmission through pipes- efficiency of transmission, condition for maximum power transmission, siphon. Open channel flow, Dimensional analysis and fluid machinery Flow through open channel- Chezy's equation, manning's equation, most economical or best hydraulic section- rectangular and trapezoidal channel; Hydraulic jump- critical, sub-critical and super critical flow, Moody's diagram; Dimensional analysis and similitude- Rayleigh's method, Buckingham's pi theorem; Dimensionless numbers-Froude's no., Reynold's no., Euler's no., Mach's no., weber's number; Model analysis: types of similarities- geometric, kinematic and dynamic similarity, scale ratio; Introduction to fluid machinery - positive displacement and Variable displacement pump.	08 Hours
Module 5	Vortex Flow, Bernoulli's equation and its Applications -Vortex motion - free and forced vortex , Dynamics of fluid flow: energy possessed by a fluid body- Bernoulli's theorem, venturimeter, pitot tube, orifice meter; Flow through devices and pipes - Flow through orifices- types, jet, vena-contracta, hydraulic coefficients, discharge of orifice, Flow through mouth pieces- types, losses in pipes, discharge of mouthpiece; Flow through notches- types, discharge through rectangular notch; Discharge over triangular, trapezoidal and stepped notch; weirs and barrages, Cipoletti weir, end contraction of rectangular weirs; Ventilation of weirs, types of nappe- free, depressed and clinging nappe;	7 Hours
Module 4	Hydrostatics, Equilibrium of Floating Bodies and Hydro-kinematics - Hydrostatics and its application - Pressure forces on plane and curved surfaces- total pressure, centre of pressure, pressure on curved surfaces, pressure on irregular shaped lamina, pressure on masonry dam: water pressure on one side and both side of dam, stability of a dam – rectangular and trapezoidal dam. Equilibrium of Floating Bodies - Buoyancy, Archimedes principle, centre of buoyancy, metacentre, metacentric height- determination of metacentric height by analytical and practical method, Condition of floatation and stability of submerged and floating bodies. Hydro-kinematics - Kinematics of fluid flow; methods of describing fluid motion- Langrangian and Eulerian description of fluid motion, path line, stream line, streak line, stream function, velocity potential and flow net, Types of fluid flow – steady and unsteady flows, uniform and non-uniform flows, laminar and turbulent flows, rotational and irrotational flows, compressible and incompressible flows, rate of flow or discharge, control volume, continuity equation.	08 Hours

Text Books:

- 1. Punmia,B.C, Jain, A.K. Soil Mechanics and Foundations,Laxmi Publications (P) Ltd., ISBN-10. 8170087910; ISBN-13. 978-8170087915
- 2. RanjanGopal and Rao A S R. Basic and Applied Soil Mechanics, Welly Eastern Ltd.. ISBN-10. 9393159378 ; ISBN-13. 978-9393159373
- 3. Singh, Alam. Soil Engineering, Vol.1. CBS Publishers and Distributers, Delhi, ISBN-10. 812390276X · ISBN-13. 978-8123902760

Reference Books:

- 1. Bansal, R.K. A Text book of Fluid Mechanics, Laxmi Publications, New Delhi. ISBN-10. 8131808157 ; ISBN-13.
- 2. Ramanuthan, S. Hydraulics, Fluid Mechanics & Hydraulic Machines, Dhanpatrai& Sons,
- 3. Khurmi, R.S. Hydraulics & Fluid Mechanics, S. Chand & Co. Ltd., New Delhi.
- 4. Modi, P.N. and Seth, S.M. Hydraulics & Fluid Mechanics, Standard Book House, Delhi
- 5. Paul, J. C. and Panigrahi, B. Practical Manual in Fluid Mechanics, CAET, OUAT, Bhubaneswar

CO1	Physical and index properties of soil, soil consistency, soil stress				
CO2	Compaction and Consolidation of soil				
CO3	Fluid properties, Fluid pressure and its measurement				
CO4	Hydrostatics and Hydrodynamics				
CO5	To learn about dynamics of fluid flow and flow through pipes				
CO6	To acquire knowledge about flow through network of pipes, power requirements and efficiency				
Туре	Code		L-T-P	Credits	Marks
------	---------------	-------------------------	-------	---------	-------
HS	BTEC-T-HS-404	Organizational Behavior	3-0-0	3	150

Objectives	To understand the human interactions in an organization find what is driving it and influence it
	for getting better results for attaining business goals
Pre-Requisites	Self-motivation and knowledge on human strategy
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned
Pedagogy	to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module-1	Focus And Purpose : Definition, need and importance of organizational behavior – Nature and scope – Evolution of Organizational behavior- Organizational behavior models.	09 Hours
Module-2	 Personality – types – Factors influencing personality – Theories – Ice-burg Model Learning – Types of learners – The learning process – Learning theories – Organizational behavior modification. Misbehavior – Types – Management Intervention. Emotions – Emotional Intelligence Motivation – importance – Types – Theories of Motivation- Effects on work behavior. Attitudes – Characteristics – Components – Formation – Measurement- Values. 	13 Hours
	Perceptions – Importance – Factors influencing perception – Interpersonal perception- perceptual Process.	
Module- 3	Communication : Importance, Types, Barriers to communication, Communication as a tool for improving Interpersonal Effectiveness Groups In Organization : Nature, Types, Why do people join groups, Group Cohesiveness & Group Decision Making- managerial Implications, Effective Team Building	13 Hours
	Leadership : Leadership & management, Theories of leadership- Trait theory, Behavioral Theory, Contingency Theory, Leadership & Followership, How to be an Effective Leader Conflict : Nature of Conflict & Conflict Resolution	
	Dynamics Of Organizational Behavior : Organizational culture and climate – Factors affecting organizational climate – Importance. Organizational change – Importance – Stability Vs Change – Proactive Vs Reaction	05 Hours
Module- 4	change – the change process – Resistance to change – Managing change. Stress – Work Stressors – Prevention and Management of stress – Balancing work and Life. Organizational development – Characteristics – objectives –. Organizational effectiveness	
	Total	40 Hours

Та	
10	
1	Organizational Behavior : <u>Allison Sheerest</u> , <u>Rachael Collinson</u> , <u>Louis Bevoc</u> · 2017
-	
2	A Textbook of Organizational Behavior with Text and Cases by Gupta C.B.
-	
Re	ference Books:
	Organizational Behavior by Stephen P. Robbins
1	Authors: Stephen P. Robbins, Timothy A. Judge, Neharika Vohra
1	Publisher: Pearson
	Essentials of Organizational Behavior Book by Stephen Robbins
	Authors: Stephen P. Robbins, Timothy A. Judge
2	Publisher: Pearson
	Edition: 2019
	Organizational Behavior Book by K. Aswathappa
	Author(s): K Aswathanna
3	Publisher: Himalaya Publishing House
	Edition: 2018
4	Organizational Behavior Meshane, S. I / Glinow, M. A. V. TMH
-	

CO1	To understand the conceptual framework of the discipline of OB and its practical applications in the organizational set up.
CO2	To deeply understand the role of individual, groups and structure in achieving organizational goals effectively and efficiently.
CO3	To critically evaluate and analyze various theories and models that contributes in the overall understanding of the discipline.
CO4	To develop creative and innovative ideas that could positively shape the organizations.
CO5	To accept and embrace in working with different people from different cultural and diverse background in the workplace.

Туре	Cod	e	Engineering Economics	L-T-P	Credits	Marks
HS	BTEC-T-H	IS-405		3-0-1	3	150
Objectives This co with a		This cou with a fo	urse will expose students to economic theory thro ocus on economic decision making for engineers	ough the use	of mathematic	al modeling
Pre-Requisites		Mathen	natics			
Teaching Pedagogy		Regular to be in	r classroom lectures with use of ICT as and wh teractive with focus on real-life problem-so	en required	, sessions are rities.	planned

Module-#	Topics	Hours
	Engineering Economics- Nature, Scope, Basic problems of an economy, Micro	09
Module-1	Economics and Macro Economics. Demand - Meaning of demand, Demand function,	Hours
	Law of Demand and its exceptions, Determinants of demand, Elasticity of demand & its	
	measurement (Simple numerical problems to be solved), Demand Forecasting -	
	Meaning SupplyMeaning of supply, Law of supply and its exception, Determinants of	
	supply, Elasticity of supply, Determination of market equilibrium (Simple numerical	
	problems to be solved).	
Module-2	Production - Production function, Laws of returns: Law of variable proportion, Law of	09 Hours
	returns to scale Cost and Revenue Concepts - Total Costs, Fixed cost, Variable cost,	
	Total revenue, Average revenue and Marginal revenue, Cost-Output Relationships in the	
	Short Run, and Cost-Output Relationships in the Long Run, Analysis of cost	
	minimization.	
	Market - Basic understanding of different market structures, Determination	08 Hours
	of equilibrium price under perfect competition (Simple numerical problems to	
Module - 3	be solved), Break Even Analysis-linear approach (Simple numerical problems to	
	be solved).	
	Time Value of Money- Interest - Simple and compound, nominal and effective	09 Hours
	rate of interest, Cash flow diagrams, Principles of economic equivalence. Evaluation of	
	Engineering Projects-Present worth method, Future worth method, Annual worth	
	method, Internal rate of return method, Cost benefit analysis	
Module - 4	for public projects. Depreciation- Depreciation of capital assert, Causes	
	of depreciation, Methods of calculating depreciation - Straight line method, Declining	
	balance method, SOYD method, After tax comparison of project.	
	Inflation-Meaning of inflation, types, causes, measures to control inflation. National	05 Hours
Module- 5	Income-Definition, Concepts of national income, Method of measuring national income.	
	Banking -Commercial bank, Functions of commercial bank, Central bank, Functions of	
	Central Bank.	
	Total	40 Hours

Te	Text Books:				
1	Principles of Economics by Deviga Vengedasalam and Karaunagaran Madhavan, Oxford				
2	Riggs, Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India				
Re	ference Books:				
1	C. S. Park, Contemporary Engineering Economics, 6th Edition, Pearson Education, 2015.				
2	Engineering Economy by William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson				
3	R.Paneer Seelvan, "Engineering Economics", PHI				
4	Ahuja,H.L., "Principles of Micro Economics", S.Chand & Company Ltd				
5					

CO1	Remembering: Define the basic concept of micro and macroeconomics, engineering economics and
	their application in engineering economy.
CO2	Understanding: Evaluate numerically the effects of changes in demand and supply on price
	determination of products and services.
CO3	Analyze: the macroeconomic environment and financial systems of the country and its impact on
	business, society and enterprise.
CO4	Develop: the ability to account for time value of money using engineering economy factors and
	formulas.
CO5	Apply: knowledge of mathematics, economics and engineering principles to solve engineering
	problems and to analyze decision alternatives in engineering projects considering upon depreciation,
C06	Remembering: Define the basic concept of micro and macroeconomics, engineering economics and
	their application in engineering economy.

Туре	Code	Agricultural Structural and	L-T-P	Credits	Marks
PE	BTAG-T-PC-401	Precision Farming	3-0-0	3	150

Objectives	1. Knowledge on mechanical and grain storage structures.	
	2. Acquire skills on protected cultivation and basic components of green house.	
	3. Gaining knowledge on irrigation, cultivation in controlled environment cultivation	
	using green house and poly house with irrigation, fogging and misting.	
Pre-Requisites	Strength of material and Environmental Engineering	
Teaching	Regular classroom lectures with use of equipment as and when required, sessions are planned	
Pedagogy	to be interactive with focus on real-life problem-solving activities.	

Module-	Topics	Hours
Module-1	Loads and use of BIS Codes.Design of Riveted joints, design of welded joints.Design of connections.Design of structural steel members in tension, compression and bending.Design of steel roof truss. Analysis and design of singly and doubly reinforced sections, Shear, Bond and Torsion. Design of Flanged Beams, Slabs, Columns, Foundations, Retaining walls.Planning and layout of farmstead. Scope, importance and need for environmental control, physiological reaction of livestock environmental factors, environmental control systems and their design, control of temperature, humidity and other air constituents by ventilation and other methods,	8 Hours
Module-2	Grain Storage Structures - Grain storage, moisture and temperature change in grain bins; Traditional storage structures and their improvement; Improved storage structures (CAP, hermitage storage, Pusa bin, RCC ring bin); Design consideration for grain storage go-down, bag storage structure; Shallow and deep bins, calculation of pressure in bins; Storage of seeds; Estimate of domestic power requirement; Sources of power supply, electrification; Electrification for rural housing.	10Hour s
Module- 3	Protected cultivation: Introduction, origin, development, National and International Scenario, components of green house, perspective, Types of green houses, polyhouses /shed nets, Cladding materials, Plant environment interactions – principles of limiting factors, solar radiation and transpiration, greenhouse effect, light, temperature, relative humidity, carbon dioxide enrichment.	6 Hours

Total			
Module-6	Livestock production facilities, BIS Standards for dairy, piggery, poultry and other farm structures. Design, construction and cost estimation of farm structures; animal shelters, compost pit, fodder silo, fencing and implement sheds, barn for cows, buffalo, poultry, etc. Fertilization – nutrient deficiency symptoms and functions of essential nutrient elements, principles of selection of proper application of fertilizers, fertilizer scheduling, rate of application of fertilizers, methods, automated fertilizer application.	6 Hours	
Module- 5	Irrigation in greenhouse and net house – Water quality, types of irrigation system, components, design, installation and material requirement. Fogging system for greenhouses and net houses – introduction, benefits, design, installation and material requirement. Maintenance of irrigation and fogging systems Greenhouse climate measurement, control and management. Insect and disease management in greenhouse and net houses Selection of crops for greenhouse cultivation, major crops in greenhouse – irrigation requirement, fertilizer management, cultivation, harvesting and post harvest techniques; Economic analysis.	6 Hours	
Module- 4	Design and construction of green houses – site selection, orientation, design, construction, design for ventilation requirement using exhaust fan system, selection of equipment, Greenhouse cooling system – necessity, methods – ventilation with roof and side ventilators, evaporative cooling, different shading material fogging, combined fogging and fan-pad cooling system, design of cooling system, maintenance of cooling and ventilation systems, pad care etc. Greenhouse heating – necessity, components, methods, design of heating system. Root media – types – soil and soil less media, composition, estimation, preparation and disinfection, bed preparation. Planting techniques in green house cultivation.	9 Hours	

Te	Text Books:				
1	Ray Choudhury K P. Engineering Materials, Oxford and IBH Pub. Co.New Delhi				
2	Rangwala S C. Engineering Materials, Charotar Pub. House, Anand-1, Gujrat.				
3	Ahuja T D and Birdi G S. Fundamentals of Building Construction, DhanpatRai and Sons,				
4	Ramamrutham S and Narayanan R. Design of Reinforced Concrete Structures, DhanpatRai Pub. Co (P) Ltd., New Delhi.				
Re	ference Books:				
1	Lehri R S and Leheri R S. Strength of Materials, S.K.Kataria& Sons, New Delhi.Pandey, P.H. Principles and practices of Agricultural Structures and Environmental Control, Kalyani Publishers, Ludhiana				
2	Sharma P. 2007. Precision Farming. Daya Publishing House New Delhi				

CO1	Design of steel structures
CO2	Study about RCC structures
CO3	Study about different Beams
CO4	Learn about different grain storage structures
CO5	Study about Greenhouse technology
CO6	Study about BIS standard and Fertilization

Туре	Code	NPTEL	L-T-P	Credits	Marks
00	BTAG-T-MC-401	MICRO IRRIGATION ENGINEERING	3-0-1	3	150

Objectives	Irrigation is the backbone of agriculture, and the efficient utilization of irrigation water is possible only by the adoption of highly efficient irrigation methods, such as micro irrigation. Micro-irrigation provides water to plant(s) in precise amount, at right time and at appropriate place
Pre-Requisites	Soil Science and Agronomical Principles and Practices for various crops
Teaching Pedagogy	Offered by IIT Madras through Massive Open Online Courses (MOOC), an asynchronous teaching-learning platform, pre-recorded lectures, resource video materials, lecture notes, assignments and quizzes, as content and self-assessment at regular intervals, through scheduling of fixed time duration with , participation of teachers and students , similar to a classroom, albeit on the Internet When offered with through supplementary DVDs and mobile delivered content.
Level :	
Start Date :	July 24, 2023
End Date :	October 13, 2023
Enrollment Ends	July 31, 2023
Exam Date :	October 29, 2023

Module-#	Topics	Hours
	Week 1: Introduction and Scope, Fundamentals of Fluid Mechanics and its	
	Application in Micro Irrigation, Soil Water Concept, Soil Water Constants and	
	Infiltration, Numerical Examples on Fluid Mechanics and soil water	
	Week 2 : Evapotranspiration, Determination of Evapotranspiration, Crop Coefficients	
	and Crop Water Requirement, Demonstration of Agro-Meteorological Instruments,	
	Demonstration of Lysimeter, Numerical Examples on Crop Water Requirement	
	Week 3 : Irrigation Scheduling , Soil and Plant Water Monitoring Instruments ,	
	Measurement of Irrigation Water, Irrigation Efficiency, Numerical Examples	
	on Irrigation Water Management	
	Week 4: Introduction of Water Lifts and Pumps , Variable Displacement Pumps , :	
	Irrigation Water Quality, Numerical Examples on Water Measurements and Pump,	
	Irrigation Methods	
	Week 5: Micro Irrigation System: Concept and Types , Drip Irrigation, Introduction and	
	Types , Drip Irrigation: Design Considerations & amp; System Layout , Types and	
	Selection of Emission Devices, Hydraulics of Drip Irrigation System Pipe Network	
	Week 6: Numerical Example on Design of Drip Irrigation System, Fertigation,	
	Fertigation Application Methods , Drip Irrigation: Filtration System ,Numerical	
	Examples on Emission Devices and Fertigation	
	Week 7: Installation and Operation of Drip Irrigation System , Maintenance of Drip	
	Irrigation System , Demonstration of Drip Irrigation Components and Evaluation of	

Drip Emitters, Soil Water Movement under a Drip Emitter, Design and Development	
of Drip Emitters	
Week 8: Numerical Examples on Drip Irrigation System, Sprinkler Irrigation System,	
Bubbler Irrigation System, Sprinkler Irrigation System, Sprinkler Irrigation System	
Design	
Week 9 : Performance Evaluation of Sprinkler Irrigation System , Numerical Examples	
on Sprinkler Irrigation System, Numerical Examples on Design of Sprinkler Irrigation	
System, Sprinkler Irrigation System: Layout, Installation, Operation and Maintenance	
Week 10: Standards and Quality Assurance of Drip Irrigation System Components,	
,Standards and Quality Assurance of Sprinkler Irrigation System Components, Solar	
PV System for Irrigation (Part 1), Solar PV System for Irrigation (Part 2) Numerical	
Examples on Solar PV Irrigation System	
Week 11: Automation of Micro Irrigation System (Part 1) ,Automation of Micro	
Irrigation System (Part 2), Automation of Micro Irrigation System (Part 3) Automation	
of Micro Irrigation System (Part 4)', Economic Analysis of MIS (Part 1)	
Week 12: Economic Analysis of MIS (Part 2), Economic Analysis of MIS (Part 3),	
Numerical Examples on Economics of MIS, Precision Agriculture, Micro Irrigation	
Engineering: Epilogue	
Total	12 WEEKS

Te	Text Books:		
1	NPTEL		
Re	Reference Books:		
1	NPTEL		

CO1	Basic fundamentals of fluid mechanics, flow through pump, filters, pipes and water dispensing
	from fine small orifices
CO2	Knowledge on design, installation, operation, automation and evaluation of micro-irrigation system.
CO3	Most efficient irrigation methods for agricultural field, commercial, vegetable and plantations crops
CO4	Knowledge to promote consultancy and entrepreneurship.
CO5	Useful to Engineers interested for working in Micro-Irrigation Industry and field practicing personnel

Туре	Code	2	Employability Enhancement	L-T-P	Credits	Marks
SC	C BTEC-T-SC-408		Training -2	3-0-1	3	150
Objectives To selv the		To signi selection their care	ficantly raise the employability of the students a process and at the same time develop an atti eer.	to a level whe tude of const	ere they are ab ant self-improv	le to clear camp vement througho
Pre-F	re-Requisites To help students practiced and understand the various company pattern tests.					
Teac Peda	hing gogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.				

Module-#	Topics	Hours
	Cubes and dices(Problem based on Single Dice, Two or more Dice), Number	5 Hours
Module-1	series(Constant difference series, Addition Series, Subtraction Series, Divisior	
	Series, Multiplication Series, Odd or Even Number Series, Prime Number Series	
	Squares or Cubes series, Alternate Pattern Series, Fibonacci Series, Arithmetic	
	Series, Geometric Series, Triangular series, Mixed Pattern Series, Wrong number	
	series),Coding and Decoding(Alphabet Coding, Numerical Coding, Symbol Based	
	Coding, Alphabet-Symbol-Numerical Coding, Values Coding, Substitution Coding	
	Decipher Coding), Seating Arrangement (Circular , Linear, Rectangle, Double row	
	Arrangement)	
	Direction(Left & Right Dilemma, Direction of shadows, Direction with reference	5 11
Module-2	point), Time &Work, Pipe Cisterns(Inlet, Outlet &Leak), Time, speed &	5 Hours
	Distance(Average speed, Inverse Proportionality of Speed & Time, Meeting Point	
	Questions), Boat & Streams (Stream, Upstream, Downstream, Stil	
	Water),Permutation & combination(Fundamental Principle of Counting	
	Permutations as an Arrangement, Combinations as Selections, P(n,r) and	
	C(n,r),Application of Permutation and Combination).	
	Data sufficiency(checking and testing a given set of information)	
Module-3	Algebra(,Elementary Algebra, Advanced Algebra, Abstract Algebra, Linea	5 Hours
Wibuute-5	Algebra) Mensuration(2D&3D)	
	Height and distance, HCF & LCM, Clocks, Probability	
	Calenders (Counting odd day, counting with reference date, without reference	
Module-4	date, Repetition) Simplification and approximation (missing numbers , simplifying	5 Hours
mouule i	equation),Train problems(length, speed, distance, relative speed,	
	direction), Average, Partnership, Progression (Arithematic, Geometric, Harmonic).	
	Total	
		ZUHOURS

Text Books:

1 Quantitative aptitude by R S Aggarwal

2 Quantitative Aptitude for CAT by Arun Sharma

CO1	To help students explore their values and career choices through individual skill assessments
CO2	To make realistic employment choices and to identify the steps necessary to achieve a goal
CO3	To develop and practice self-management skills for the work site
CO4	To explore and practice basic communication skills
CO5	To learn skills for discussing and resolving problems on the work site
CO6	To assess and improve personal grooming

Туре	Code	Farm Machinery and Equipment II	L-T-P	Credits	Marks
Р	BTAG-P-PC-501	Lab	0-0-2	1	100

Objectives	1. Practical knowledge on machinery and farm implements related to intercultural, harvesting
	and post-harvest operation
	2. Study the adjustments of different components to enhance performance
	3. Know the material construction of different equipment
Pre-Requisites	Knowledge on Farm machinery
Teaching	field practical with use of machines and equipment through interaction and discussion
Pedagogy	

Expt No	Торіс
1	Study of sprayer and functional components
2	Study of duster and functional components.
3	Study of potato planter and components
4	Familiarization with manual weeding equipment and identification of
5	Functional components.
6	Study of fertilizer application equipment
7	Study of fertilizer broadcaster
8	Familiarization with combine harvester. Study on construction and function of Different parts of combine harvester
9	Study of potato digger/harvester, constructional details, materials and working
10	
	Study of groundnut harvester, constructional details, materials and working

Туре	Code	Engineering Pronerties of	L-T-P	Credits	Marks
Р	BTAG-P-PC-402	Agricultural Produce Lab	0-0-3	1	100

Objectives	Knowledge on determination of various properties of grains, fruits, vegetables etc.
Pre-Requisites	Knowledge on soils science, agronomical practices for field and crops
Teaching Scheme	Practical with use of devices, tools and equipment through interaction and discussion

Evaluation Scheme

T	eacher's Assessme	nt	Written A	ssessment	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	IUtal	

Module-#	Topics	Hours	
Experiment-1	Determine the size of grains, fruits and vegetables using measuring instruments	2Hours	
Experiment-2	Determine the size of grains, fruits and vegetables using projector	2Hours	
Experiment-3	Determine the shape (sphericity and roundness) of grains and fruits and	2Hours	
Experiment-4	Determine the bulk and particle volume, bulk and particle density and porosity of grains	ty 2Hours	
Experiment-5	Determine the volume, density and specific gravity of large individual objects (F &V)	2Hours	
Experiment-6	Determine the surface area of the fruits and vegetables	2 Hours	
Experiment-7	Determine angle of repose of grain	2 Hours	
Experiment-8	Determine specific heat of some food grains	2 Hours	
Experiment-9	Find out the co-efficient of friction of different grains with different surface	2 Hours	
Experiment-10	Find out the co-efficient of internal friction of different grains	2 Hours	
Experiment-11	Study the separating behavior of grains in a vertical wind tunnel		
Experiment-12	Determine hardness of food materials.	2 Hours	
	Total	24 Hours	

Туре	e Code		Mechanics & Open Channel Hydraulics	L-T-P	Credits	Marks
Р	BTAG-P-PC-403		AG-P-PC-403 Lab		1	10
Objectives		Acqu and pi	ire knowledge on soil mechanics and fluid mechanics a pes for field application in crop production with efficient	and flow beh	navior of fluid n purpose	l in channels
Pre-Requisites		Bas	ic Mechanical and Civil Engineering			
Teaching Pedagogy		Reg to b	ular classroom lectures with use of ICT as and when the interactive with different examples	ien require	d, sessions	are planned

Expt No	Торіс	Hours
1	Determination of specific gravity, bulk density, dry density by sand replacement method	2 Hours
2	Determination of grain size distribution of coarse grained soil by sieving	2 Hours
3	Determination of grain size by hydrometer method	2 Hours
4	Determination of liquid limit by Cassagrande apparatus/cone penetrometer	2 Hours
5	Determination of plastic limit of soil specimen	2 Hours
6	Determination of shrinkage limit of soil	2 Hours
7	Optimum mc of saturated soil by Abbot's compaction test/Proctor's mould method	2 Hours
8	Hydraulic conductivity by falling head/constant head method	2 Hours
9	Consolidation characteristics of soil	2 Hours
10	Shear strength of soil by direct shear test/ tri-axial shear test	2 Hours
11	Study of manometers and pressure gauges	2 hours
12	Determination of co-efficient of discharge of venture meter, rectangular / triangular notch	2 Hours

Туре	Code	Project-III	L-T-P	Credits	Marks
PS	BTAG-P-PS-401	-	3-0-1	2	150

Objectives	To analyze the designing process of equipment for Harvesting and processing and value addition of agricultural produce
Pre-Requisites	Knowledge of farm machinery and equipment and Engineering properties of agricultural produce
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned
Pedagogy	to be interactive with different examples and monitoring of progress from time to time.

Projects

- 1. Fabrication of Solar power grass cutter (prototype model)
- 2. Agricultural Paddy Cleaning System by using Solar Power
- 3. Portable vegetable Cutter and Slicer
- 4. Fabrication of low cost harvesting machine
- 5. Fabrication of solar seed dryer
- 6. Fabrication of tomato grader
- 7. Sensor based Automatic Fault Egg Sorting Machine
- 8. Automatic soil Moisture Controlling System for Garden
- 9. Fabrication of solar operated spray pump
- 10. Fabrication of solar operated automatic bird repellent device
- 11. Fabrication of composite grain separator
- 12. Fabrication of Beans Sheller machine
- 13. Design and fabrication of chili seeds extractor.
- 14. Design and fabrication of a tomato seed extractor.
- 15. Design and fabrication of a brinjal seed extractor.
- 16. Study on Moringa leaf powder.
- 17. Study on extruded vegetables.
- 18. Use of IOT for measuring flow velocity in channel.
- 19. Study on egg yolk and egg White powder
- 20. Study on egg shell powder

CO1	Utilization of solar power in agricultural operation for drudgery reduction
CO2	Quality improvement of agricultural produce
CO3	Efficient utilization of irrigation of water
CO4	Development of cost saving devices for agricultural operation
CO5	Utilization of food waste for useful purpose