Final Syllabus for B.Tech (First year) (2023 Admission Batch)

All Branches

(To be approved by Academic Council and Board of Studies)

GIFT Autonomous College

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela)
Recognised under section 2(f) of the UGC act, 1956
At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pincode: 752054

1st Year Course

S E E E E E E E E E E E E E E E E E E E	Course Code BTBS-T-BS-101 BTBS-T-BS-102/ BTBS-T-BS-103 BTBS-T-ES-101/ BTBS-T-ES-102 BTBS-T-ES-104/ BTBS-T-ES-105 BTBS-T-HS-101 BTBS-T-MC-101/ BTBS-T-MC-102 BTBS-T-MC-102/ BTBS-P-BS-103/	Course Title Mathematics I Elements of Engineering Physics / Applied Chemistry Basic Electrical Engg./ Basic Electronics Engg. Basic Programming Skills Basic Mechanical Engg/ Basic Civil Engineering English for Engineers-I Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	WCH L-T-P 4-0-0 3-0-0 3-0-0 2-0-0 2-0-0	2 2 3 2 1 1 0 13
S E E E E E E E E E E E E E E E E E E E	BTBS-T-BS-101 BTBS-T-BS-102/ BTBS-T-BS-103 BTBS-T-ES-101/ BTBS-T-ES-102 BTBS-T-ES-103 BTBS-T-ES-104/ BTBS-T-ES-105 BTBS-T-ES-105 BTBS-T-HS-101 BTBS-T-MC-101/ BTBS-T-MC-102	Mathematics I Elements of Engineering Physics / Applied Chemistry Basic Electrical Engg./ Basic Electronics Engg. Basic Programming Skills Basic Mechanical Engg/Basic Civil Engineering English for Engineers-I Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	L-T-P 4-0-0 4-0-0 3-0-0 3-0-0 2-0-0 2-0-0	3 2 2 3 2 1
S E E E E E E E E E E E E E E E E E E E	BTBS-T-BS-102/ BTBS-T-BS-103 BTBS-T-ES-101/ BTBS-T-ES-102 BTBS-T-ES-103 BTBS-T-ES-104/ BTBS-T-ES-105 BTBS-T-HS-101 BTBS-T-MC-101/ BTBS-T-MC-102	Elements of Engineering Physics / Applied Chemistry Basic Electrical Engg./ Basic Electronics Engg. Basic Programming Skills Basic Mechanical Engg/ Basic Civil Engineering English for Engineers-I Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	4-0-0 3-0-0 4-1-0 3-0-0 2-0-0	2 2 3 2 1 0
S E S S S S S S S S S S S S S S S S S S	BTBS-T-BS-103 BTBS-T-ES-101/ BTBS-T-ES-102 BTBS-T-ES-103 BTBS-T-ES-104/ BTBS-T-ES-105 BTBS-T-HS-101 BTBS-T-MC-101/ BTBS-T-MC-102 BTBS-T-MC-102	Engineering Physics / Applied Chemistry Basic Electrical Engg./ Basic Electronics Engg. Basic Programming Skills Basic Mechanical Engg/ Basic Civil Engineering English for Engineers-I Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	3-0-0 4-1-0 3-0-0 2-0-0 23	2 3 2 1 0
E E E E E E E E E E E E E E E E E E E	BTBS-T-ES-102 BTBS-T-ES-103 BTBS-T-ES-104/ BTBS-T-ES-105 BTBS-T-HS-101 BTBS-T-MC-101/ BTBS-T-MC-102	Engg./ Basic Electronics Engg. Basic Programming Skills Basic Mechanical Engg/ Basic Civil Engineering English for Engineers-I Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	4-1-0 3-0-0 2-0-0 2-0-0	3 2 1 0
S E	BTBS-T-ES-104/ BTBS-T-ES-105 BTBS-T-HS-101 BTBS-T-MC-101/ BTBS-T-MC-102	Basic Mechanical Engg/Basic Civil Engineering English for Engineers-I Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	3-0-0 2-0-0 2-0-0	1 0
S E	BTBS-T-ES-105 BTBS-T-HS-101 BTBS-T-MC-101/ BTBS-T-MC-102 BTBS-T-MC-102	Basic Civil Engineering English for Engineers-I Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	2-0-0	0 13
C E	BTBS-T-MC-101/ BTBS-T-MC-102 BTBS-P-BS-102/	Information Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	2-0-0	13
S	3TBS-T-MC-102 [°]	Technology & Information System /Constitution of India Total Hours/ Credit (Theory) Practical Elements of Engineering	23	13
		Total Hours/ Credit (Theory) Practical Elements of Engineering		
		Elements of Engineering	0-0-2	1
			0-0-2	1
		Physics Lab/ Applied Chemistry Lab		1
-	BTBS-P-ES-101/ BTBS-P-ES-102	Basic Electrical Engg. Lab/ Basic Electronics Engg. Lab	0-0-2	1
S E	BTBS-P-ES-103	Basic Programming Skill Lab	0-0-3	1.5
-	BTBS-P-ES-104/ BTBS-P-ES-105	Basic Mechanical Engg lab, Basic Civil Engineering lab	0-0-2	1
		Engineering Graphics with AutoCAD / Workshop Practice-I	0-0-3	1.5
S E	BTHS-P-HS-101	English for Engineers Lab-I	0-0-2	1
S E	BTPS-P-PS-101	Project-1	0-0-2	1
		Total Hours/ Credit (Practical)	16	8
	Grand T	Fotal Hours/ Credit (Practical)	39	21
•	S I	BTBS-P-ES-105 BTHS-P-HS-101 BTPS-P-PS-101	BTBS-P-ES-105 with AutoCAD / Workshop Practice-I BTHS-P-HS-101 English for Engineers Lab-I	BTBS-P-ES-105 with AutoCAD / Workshop Practice-I S BTHS-P-HS-101 English for Engineers Lab-I 0-0-2 BTPS-P-PS-101 Project-1 0-0-2 Total Hours/ Credit (Practical) 16

		S	econd Semester		
			Theory		
SI. No.	Catego ry	Course Code	Course Title	WCH	Credit
1	BS	BTBS-T-BS-201	Mathematics II	L-T-P 4-0-0	3
2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2
3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical Engg/ Basic Electronics Engg./	3-0-0	2
4	ES	BTBS-T-ES-203	Programming Using Data Structure	4-1-0	3
5	ES	BTBS-T-ES-104/ BTBS-T-ES-105	Basic Mechanical Engg/ Basic Civil Engineering	3-0-0	2
6	HS	BTBS-T-HS-201	English for Engineers-II	2-0-0	1
7	MC	BTBS-T-MC-101/ BTBS-T-MC-102	Information Technology & Information System /Constitution of India	2-0-0	0
	I		Total Hours/Credit (Theory)	23	13
			Practical		
1	BS	BTBS-P-BS-102/ BTBS-P-BS-103	Elements of Engineering Physics Lab/ Applied Chemistry Lab	0-0-2	1
2	ES	BTBS-P-ES-101/ BTBS-P-ES-102	Basic Electrical Engg. Lab/ Basic Electronics Engg. Lab	0-0-2	1
3	ES	BTBS-P-ES-203	Programming Using Data Structure Lab	0-0-3	1.5
4	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Basic Mechanical Engg lab, Basic Civil Engineering lab	0-0-2	1
4	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Engineering Graphics with AutoCAD / Workshop Practice-I	0-0-3	1.5
5	HS	BTBS-P-HS-201	English for Engineers Lab-II	0-0-2	1
6	PS	BTPS-P-PS-201	Project-2	0-0-2	1
		1	Total Hours/ Credit (Practical)	16	8
		Gra	nd Total Hours/ Credit (Practical)	39	21
					l

Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA are:

- PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective

reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11. Project Management and Finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12. Life-long Learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
Page 4 of 66

Course Types & Definitions

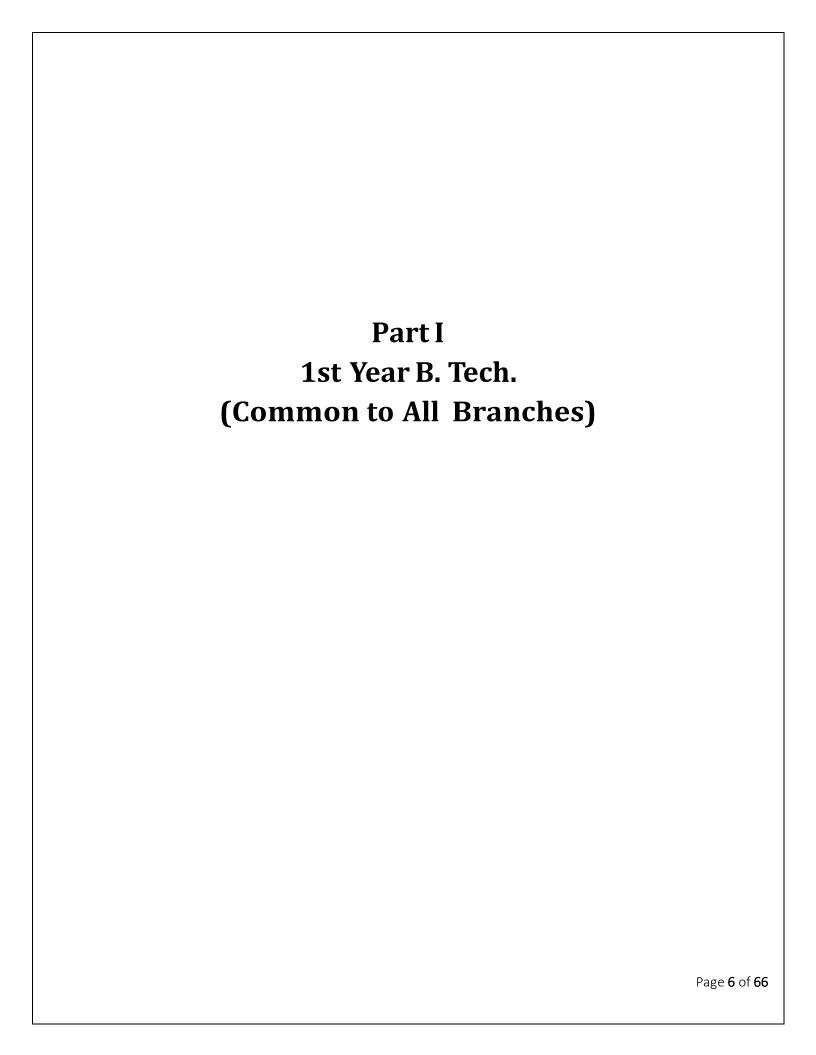
L Lecture T Tutorial

P Laboratory / Practical / Sessional

WCH Weekly Contact Hours

BS Basic Sciences

HS Humanities & Social Sciences (including Management)


ES Engineering Sciences
PC Professional Core
PE Professional Elective

OE Open Elective

MC Mandatory Course

SC Skill Course

PS Project/Seminar/Internship

Contents

First Year B.Tech

Curriculum Structure

B.Tech (1st Semester & II nd Semester)

Item	Page No
Curriculum Structure	2
Evaluation Process	8
Details Syllabus	
Theory	
Introduction to Mathematics I	9-10
Elements of Engineering Physics	11-13
Applied Chemistry	14-16
Basic Electrical Engineering	17-19
Basic Electronics Engineering	20-21
Basic Programming Skills	22-23
Basic Mechanical Engineering	24-25
Basic Civil Engineering	26-28
English for Engineers-I	29-31
IT & IS	32-34
Constitution of India	35-36
Introduction of Mathematics-II	37-38
Programming Using Data Structure	39-40
English for Engineers-II	41-42
Practical	
Elements of Engineering Physics Lab	43-44
Applied Chemistry Lab	45-46
Basic Electrical Engineering Lab	47-48
Basic Electronics Engineering Lab	49-50
Basic Programming Skills lab	51-52
Basic Mechanical Engineering Lab	53-54
Basic Civil Engineering Lab	55-56
Engineering Graphics with AutoCAD	57-58
Workshop Practice-I	59-60
English for Engineers Lab-I	61
Programming Using Data Structure Lab	62-64
English for Engineers -II	65-66

Evaluation process

1. Evaluation Process of Theory Subjects:

Components	Marks	Frequency	Assigned To
Quiz Test	5	2	Concerned Faculty
Surprise Test	5	2	Concerned Faculty
Assignment	5	2	Concerned Faculty
Attendance	5	Closing of	To be retrieved from CMS
Attendance		Instruction	To be retrieved from Civis
		1 (Before	
Project	10	Closing of	Concerned Faculty
		Instruction)	
Mid-Semester Examination	20	1	Examination Cell
End-Semester Examination	100	1	Examination Cell
Total	150		

2. Evaluation Process of Practical Subjects:

Components	Marks	Frequency	Assigned To
Attendance	10	Closing of Instruction	To be retrieved from CMS
Daily Performance & Viva-voce	14()	1	Concerned Faculty (Upload in CMS in weekly basis)
Lab Record	20	On the day of Experiment	Concerned Faculty
End-Semester Lab Test	30	1	At the end of the semester as per the schedule published by Examination Cell
Total	100		

3. Evaluation Process of Skill Courses:

Components	Marks	Frequency	Assigned To
End-Semester Examination	100	1	Examination Cell/ Concerned Faculty
Total	100		

4. Evaluation Process of Mandatory Courses:

Components	Marks	Frequency	Assigned To
In-Semester Evaluation	100	1	Examination Cell/ Concerned Faculty
Total	100		

Type	Code	Mathematics - I	L-T-P	Credits	Marks
BS	BTBS-T-BS-111	with the first of the second s	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of ordinary differential equations and applications, solution of system of linear equations using matrix, Eigen vectors & Eigen values of matrices with applications.
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
	Solution of first order differential equations, Linear equation, Bernoulli's equation.	
Module-1	Second order differential equations with constant coefficients, Euler-Cauchy equation.	12 Hours
	Experiential learning-Applications of differential equations in 2D using MATLAB.	
	Introduction to vector space, sub space, linearly independent and linearly dependent	
Module-2	vectors, solution of system of linear equations, Gauss elimination, and Gauss-Jordan	13 Hours
	methods, Determinant, Inverse of a matrix, Rank of a matrix. Basics of linear	
	transformation, Eigen values and Eigen vectors.	
	Experiential learning- Blending system of linear equations in Gauss elimination	l
	method, Computation of Eigen values and Eigen vectors using MATLAB.	
	Vector Differential Calculus: Vector and Scalar functions and Fields, Derivatives,	
Module-3	Curves, Tangents and Arc length, Gradient, Divergence and Curl with applications.	8 Hours
	Average, Problems on Ages, Percentage, Profit and Loss, Ratio and Proportion, Time	<u>,</u>
Module-4	and Work, Time and Distance, Simple and Compound Interest.	12 Hours
	Total	45 Hours

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, Quantitative Aptitude For Competitive Examinations, S. Chand publication.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.
- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. A. Sharma, Quantitative Aptitude, Mc Graw Hill Education Pvt. Ltd
- R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley Publication

Online Resources:

- 1. https://nptel.ac.in/courses/111106100
- 2. https://nptel.ac.in/courses/111105121
- 3. https://nptel.ac.in/courses/111104137
- 4. https://nptel.ac.in/courses/111107108
- 5. https://nptel.ac.in/courses/111106051
- 6. https://nptel.ac.in/courses/111105134

CO1	Find the general solution of first and second order ordinary differential equations and use the general solution to find the specific solution for given initial value problems.
CO2	Solve and demonstrate various physical models through second order differential equations.
CO3	Use the understanding of matrix algebra to solve systems of linear equations, harmonics problems, population models etc. arising in various engineering fields.
CO4	Demonstrate knowledge and applications of Eigen value problems related to engineering disciplines.
CO5	Application of mathematics for engineers through MATLAB.
CO6	Know the basic concepts of quantitative aptitude to meet real life requirements.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-102	Elements of Engineering Physics	4-0-0	2	150

Objectives	1. To expose students to the fundamental principles and laws of mechanics in	
	Physics to understand the types of motion.	
	2. To analyze the concepts of mechanics, oscillations, waves and optics to prepare	
	the students for advanced level courses.	
	3. To demonstrate the ability to identify and apply the appropriate analytic,	
	numerical, and mathematical reasoning, to situations of the physical world.	
	4. To adaptability to new developments in science and technology.	
Pre-Requisites	Class 12 th level Physics course	
Teaching Pedagogy	gy Regular classroom lectures with use of ICT as and when required, sessions are	
	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
	Oscillation, waves and Mechanical Properties	
Module-1	Simple, damped and forced oscillations, resonance, coupled oscillations.	12 Hours
	Wave and wave equation, Superposition of waves.	
	Interference, Young's double slit experiment, Newton's rings, Diffraction,	
	Fraunhofer diffraction by single slit, Diffraction Grating, Polarization, Malus'	
	Law, Brewster's Law.	
	Mechanical Properties of Matter Stress, strain, Hooke's law, elastic constants	
	and their relations, stress-strain diagrams	
	Experiential learning: - Different Types of Oscillator circuits	
	(Using inductor and capacitor frequency will be determined)	
Module-2	Electromagnetism and Concept of Quantum mechanics	
	Divergence, Curl and Gradient, Line, Surface and volume integral, Gauss divergence theorem, Stokes theorem (Only Statements, no proof), Gauss's law, Ampere's law and Faraday's law of electromagnetic induction, Maxwell's equations in integral and differential form.	10 Hours
	Black body radiation, Planck's law, photo electric effect (concept and equation),	
	Matter waves, de Broglie hypothesis, Heisenberg's Uncertainty Principle and its	
	application, Schrodinger's wave equation - Time independent and Time	
	dependent equations, Free particle, Particle in a one dimensional rigid box.	
	Experiential learning:-Soft image using quantum Machine learning Algorithm	

	Engineering Materials Semiconducting Material: Defects in solids (Elementary idea), Concept of	
	energy bands in solids, carrier concentration and conductivity in semiconductors	
	with temperature dependence, construction and working of PN junction diode. Dielectric materials, Dielectric Polarization, Dielectric Breakdown, Dielectric constant and loss, Electromagnetic wave in dielectric medium.	
	effect, Type I & Type II superconductors, BCS theory, applications of super	
	conducting materials.	
	Nano material: Classifications, Quantum confinement, surface to volume ratio,	
	Graphene and its structure, Application.	
	Experiential learning: Magnetic energy storage devices, Construction of battery	
	<mark>and diode</mark> .	
	Quantum Statistics and Optoelectronic devices	
Module-4	Statistical Mechanics: Statistical distributions: Maxwell-Boltzmann, Molecular	12 Hours
	Energies in an ideal gas, Bose-Einstein and Fermi-Dirac statistics.	
	Laser: Spontaneous and stimulated emission, Einstein's coefficients, Population	
	inversion, Light amplification, Basic laser action, Types of laser, Ruby and He- Ne lasers, applications.	
	Fiber Optics: Optical fiber and its principle, acceptance angle, numerical	
	aperture for step and graded index fibers, attenuation mechanism in optical	
	fibers, applications of optical fibers.	
	Experiential learning: Optical fiber communication, LED	
	Design different types of sensors using optical fiber.	

Text Books:

T1. Principles of Engineering Physics-Vol. I and II by M. Khan & S. Panigrahi, Cambridge university Press

T2. Physics for Engineering degree students, B. B Swain & P. K Jena.

Reference Books:

- R1. Electronic Devices and Circuits Millman, Halkias and Jit, Tata McGraw Hill
- R2. Concepts of Modern Physics : A Beiser, S Mahajan, S. Raichoudhury
- R3. Optics: A. K. Ghatak
- R4. Introduction to Solid State Physics: S. O. Pillai
- R5. Properties of matter: D. S. Mathur
- R6. Heat and Thermodynamics: N Subramaniam

Online Resources:

- 1. https://nptel.ac.in/courses/122106027
- 2. https://nptel.ac.in/courses/115105121
- 3. https://onlinecourses.nptel.ac.in/noc22 ph06/preview
- 4. https://nptel.ac.in/courses/115105097
- 5. https://nptel.ac.in/courses/108106161

CO1	Understand the concepts of waves, oscillation and its significance.
CO2	Acquire skills to apply formulas of optics and wave physics.
CO3	Gain Acquire Knowledge of basic concepts of electric and magnetic fields.
CO4	Develop the concept of different engineering material and their applications.
CO5	Understand the basic knowledge of thermodynamic and use them to solve practical problems.
CO6	Develop a comprehension of the current basis of broad knowledge in Modern physics.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-103	Applied Chemistry	4-0-0	2	150

Objectives	The objective of this course is to make students learn about basic concepts and application of Chemistry from Industrial, Pharmaceutical, research, agriculture and life science point of view.	
Pre-Requisites	A fundamental knowledge of Quantum, Inorganic chemistry, along with basics of Periodic table, properties of metal are to be clear.	
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Module-1	Quantum Mechanics and its application: Failure of classical mechanics and introduction to quantum mechanics, Photoelectric effect, Postulates of Quantum mechanics, Schrodinger's wave equation (Derivation not required), Particle in One dimensional box, Significance of eigen value and eigen function. Zero point energy.	12 Hours
	Phase rule and its application : Definition of phase, component and degree of freedom, one component system, Water, Sulphur system, Curves and triple points, meta stable triple point, Two component alloy systems: Bi-Cd, eutection point	
	Experiential learning:- Preparation of alloys, Isolation of Salts from Mixtures (By adjusting Temperature and Composition)	
Module-2	Electro Chemistry and its application: Electro chemical cells, Dry cell, Alkaline battery, Ni-Cd battery, Li-ion Battery, Pb-acid storage cell Fuel Cells: Definition, Different types of fuel cell, Hydrogen blue fuel cell, FCEVs	13 Hours
	Corrosion: Theory and mechanism of corrosion, Types, differential aeration corrosion, water line corrosion, Pitting, stress, SCC, galvanic corrosion, Caustic embrittlement, Factors affecting corrosion, Corrosion Control, corrosion inhibitors: Cathodic protection, Metal coatings.	
	Experiential learning:- Preparation of dry cell	
	(Using metal, carbon rod and insulating Separator)	

	Pharmaceutical and Research. Experiential learning:- CNTs are synthesized by thermal CVD method using hydrocarbon gas as carbon source (Using Quartz tube and RF heater)	
Module-4	Acid(Nylon 66) Polymer. (Using Adipoyl Chloride) Nano materials: Introduction, Classification, characteristics, 0D,1D, 2D Nanomaterials, Synthesis: Top Down & Bottom Up approach, Application to	8 Hours
	Polymer : Degree of polymerization, Thermosetting and thermoplastic polymer with examples: Polethene, PVC, Nylon-6, Teflon and their applications, Rubber: Natural rubber, Vulcanized rubber. Experiential learning:- Preparation of Hexamethyelene diamine Adipic	
Module-3	Fuel : Classification, calorific value, refining of crude oil, cracking, fuel for I/C engine, knocking, anti-knocking, Octane rating. Diesel engine fuels, Cetane rating, Combustion calculations. Gaseous fuel: LPG, CNG, Biogas fuel, Alternate Fuels, carbon foot print, carbon trading	12 Hours

Text Books:

- T1. Theory & Practical's of Engineering Chemistry, By Shashi Chawla, Publisher: Dhanpati Rai & CO.(Pvt.) Ltd
- T2. Engineering Chemistry Vol-I & II, Author: Jain & Jain, Publisher: Dhanpati Rai Publishing Company.
- T3. Engineering Chemistry, Author: Prasant Rath, 2015, Cenage Learning India Pvt, Ltd
- T4. Textbook on Engineering chemistry. Author: Achyutananda acharya & Biswit Samantaray, publisher: Pearson

Reference Books:

- R1. Theory & practical's of engineering chemistry, by Shashi Chawla, publisher: Dhanpati Rai & CO.(Pvt.) Ltd
- R2. Engineering chemistry vol-i & II, author: Jain & Jain, publisher: Dhanpati Rai publishing company.
- R3. A textbook of engineering chemistry, author: Dr. Rajshree Khare publisher: S.K. Kataria & sons.
- R4. Textbook of nanoscience and nanotechnology. Mcgraw Hill Education (India) Pvt. Ltd., 2012.
- R5. Nanostructures & Nanomaterials: synthesis, properties and applications- g. Cao and Y. Wang, world scientific

 Pvt.

Ltd.; 2nd edition

Online Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cells
- 2. https://www.britannica.com/science/polymer
- 3. https://www.niehs.nih.gov/health/topics/agents/sya-nano/index.cfm
- 4. https://afdc.energy.gov/vehicles/fuel_cell.html
- 5. https://www.researchgate.net/publication/258761372

CO1	Describe graphs of one and two component system (curves) and their characteristics.	
CO2	Solve quantum energy related problem and determine the quantized energy of different energy levels.	
CO3	Explain the methodology of corrosion occurrence in different cases and its prevention to optimum level.	
CO4	Explore the concepts and methods of blending of fuels with better Cetane and Octane number.	
CO5	Use the concept of Polymer Synthesis, Nano material synthesis methodologies and types of nanomaterial.	

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-101	Basic Electrical Engineering	3-0-0	2	150

	To expose to the field of electrical &electronics engineering, and to acquire the fundamental knowledge in the field.		
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education		
	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.		

Module-#	Topics	Hours	
Module-1	Introduction to Electrical power system: An overview of Electrical Engineering, Sources of energy, steam, hydro and nuclear power generation, Renewable source of Power generation and general structure of electrical Transmission, Distribution, and Utilization & Conservations. DC Circuits: Study of Electrical Elements (R, L, C). Ohm's Law. Series & Parallel combination. KCL, KVL, Nodal & Mesh analysis. Star Delta Conversion. Superposition theorem, Thevevnin's theorem, Experiential learning:- Power generating station (Construction of Small hydro plant, Biomass plant) LED light using solar energy.	10 Hours	
Module-2	AC fundamentals: Sinusoidal Wave form, Peak, RMS, Average value. Concept of Real Power, Reactive Power, Apparent Power &Power factor. Analysis of 1-phases AC circuit. Introduction to 3- phase system. Line & Phase quantity in star and delta connection, Analysis of 3- phases balanced AC circuit. Concept of resonance in series and parallel R-L-C circuits. Magnetic circuits: Electro magnetism, simple magnetic circuit, magnetic material, B-H curve. Experiential learning:- Design of Magnetic Circuits to learn self induction & Mutual inductance.		
Module-3	Electrical Machines: Construction, working principle & Application of DC generator, DC Motor, 3 phase & single phase induction motor, Alternator & Special Motors (Stepper & BLDC) Experiential learning:- Single phase transformer construction and working: Definition of Transformer, construction of Winding of shell type Transformer.	8 Hours	

Total		40 Hours
	Experiential learning:- Making of LED bulb and Determination of Ratings of Different types of Lamps. (Tungsten, Mucury Vapour, CFL & LED)	
Module-4	Different Illumination, Batteries and their applications.	
	Electrical Safety: Safety Procedure for working on electrical mains & Apparatus, Electrical hazard, its preventions & Protections, Fire preventions & protection for electrical installations. First aid in electrical Injuries. Artificial respiration & chest compression for accidents victims. Importance of IE rules and Electrical License rules.	10 Hours
	Design of Electric Circuit using Circuit Breaker & Fuse for domestic house wiring.	
	Experiential learning:-	
	Type of earthing & Different types of Domestic Wiring.	
ı	Electrical Installations & wiring: Layout of LT switchgear, Switch fuse unit (SFU), MCB, ELCB, MCCB.	

Text Books:

T1.D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.

T2. Principles of Electrical Safety, Peter E. Sutherland, Wiley-IEEE Press.

Reference Books:

R1. "Basic Electrical Engineering" by Mittle, V and Arvind Mittle, Tata McGraw Hil.

R2.E. Hughes, "Electrical and Electronics Technology", Pearson.

R3. Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.

R4. "Basic Electrical Engineering" by C L Wadhwa, New Age pub.

R5.D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.

R6. Electrical Safety Handbook, 4th Edition Hardcover by John Cadick Mary Capelli-Schellpfeffer Dennis

Neitzel Al Winfield

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc23_ee62
- 2. https://onlinecourses.nptel.ac.in/noc23_ee17
- 3. https://onlinecourses.nptel.ac.in/noc23_ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23_ee15
- 6. https://onlinecourses.nptel.ac.in/noc22_ee90
- 7. https://onlinecourses.nptel.ac.in/noc22_ee93

CO1	Introduce fundamentals idea & techniques about electrical engineering & to provide knowledge about DC, AC.
CO2	Analyses of different problems of electrical circuit using electrical theorems.
CO3	Understanding of magnetic circuit and solving the basic problems.
CO4	Impart conceptual analysis of electrical machineries & to familiarize the students with electrical safety equipment & domestic wiring.
CO5	Understand and implementation the earthing and wiring system.
CO6	Inculcate sound understanding of illumination scheme.

Type	Code	Basic Electronics Engineering	L-T-P	Credits	Marks
ES	BTBS-T-ES-102	Dasic Electronics Engineering	3-0-0	2	100

Objectives	To expose to the field of electronics engineering, and to acquire the fundamental knowledge in the field.
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Scheme Regular classroom lectures with use of ICT as and when required,	
	sessions are planned to be interactive with focus on problem solving

Evaluation Scheme

T	eacher's Assessm	ent	Written A	Assessment	Total
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term End-Term		Iotai

3.5 3 3 "	To a second distribution of the second distribut	
Module-#	Topics	Hours
Module-1	Introduction to Electronics and Communication Engineering: Basic Electronics components (active, passive), Signal, Spectrum, Frequency Band and Industrial application(VLSI, Microwave, RF, Telecommunication, Fiber Optics, RADAR, Signal Processing). Basic Communication Block Diagram and concept of Transmitter, Receiver and Channel. Diodes: Overview of Semiconductors. Working principle and characteristics of PN junction. Experiential Learning: Diode applications (half-wave and full-wave rectifier, clipper, clamper and zener /Avalanche Breakdown).	10 Hours
Module-2	Bipolar Junction Transistor :Construction, Operation of Bipolar Junction Transistor and Experiential Learning : Transistor Biasing : Fixed Bias, Voltage divider bias, Transistor as a switch, CB, CE, CC (Relationship between α , β , γ) circuit configuration Input-output characteristics, as an Amplifier . Op-Amp:The Operational Amplifier (Op-Amp): The Ideal Op-Amp Characteristics, Virtual ground concept, Inverting and non-inverting configurations, Application of Op-Amp (Summing amplifier, Integrator, Differentiator. Unit Gain Amplifier)	10 Hours
Module-3	Basics of Digital Electronics: Number System, Inter conversion of Number Systems, Binary Arithmetic, Boolean Algebra, Simplification of Boolean Expressions, Demorgan's Theorem, SOP, POS, Digital logic Gates (AND, OR, NOT, NAND, NOR, EXOR, EX-NOR); Realization of Basic logic gates using universal gates, Combinational Circuits-Half-Adder, Full-Adder, Half-Subtractor, Full-Subtractor. Basic concept of Sequential Circuits, latch and flip-	12 Hours

Module-4	Introduction to Microprocessors and Microcontrollers: Basic block diagram: input, output, ALU, CU, Registers ,Difference between microprocessor and microcontroller. Experiential Learning: Introduction to chip designing and manufacturing. Introduction to Sensors and their Applications: Introduction to different types of Sensors: Temperature sensor, Moisture Sensor, Rain Sensor, LDR, IR, Smoke Sensor	& Hours
	Total	40 Hours

Text Books:

- T1. Electronic Devices and Circuit Theory (Ninth Edition), Robert L. Boylested and Louis Nashelsky, Pearson Education, 482 FIE, Patparganj, Delhi 110 092.
- T2.Digital Design, 5th Edition M. Morris Mano and Michael D Ciletti Pearson
- T3.B. Ram, Fundamentals of Microprocessors and Microcomputers, Dhanpat Rai Publications **Reference Books**:
 - R1 Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.
 - R2.E. Hughes, "Electrical and Electronics Technology", Pearson.
 - R3.Microelectronic Circuits, 7th Edition Adel S Sedra and Kenneth C Smith Oxford University Press
 - R4.Fundamentals of Digital Circuits, 4th Edition A Anand Kumar PHI
 - R5. Integrated Electronics, 2nd Edition Jacob Millman and Christos Halkias Tata McGraw Hills
 - R6. A course in Electrical and Electronic Measurements and Instrumentation Author: AK Sawhney Publisher: Dhanpat Rai & Co. (P) Limited

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc23_ee62
- 2. https://onlinecourses.nptel.ac.in/noc23_ee17
- 3. https://onlinecourses.nptel.ac.in/noc23 ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23 ee15
- 6. https://onlinecourses.nptel.ac.in/noc22_ee90
- 7. https://onlinecourses.nptel.ac.in/noc22 ee93

CO1	To introduce fundamentals idea & techniques about electrical engineering & to provide
CO2	To impart conceptual analysis of electrical machineries & to familiarize the students with
CO2	electrical safety equipment & domestic wiring.
CO3	To inculcate sound understanding of illumination scheme.
CO4	To give knowledge about basic electronic components , industrial applications and
CO5	To understand basic operation and applications of Diode, BJT and Op-Amp.
CO6	To Study basic digital concepts, sensors, microprocessors and microcontrollers

Type	Code		L-T-P	Credits	Marks
ES	BTES-T-ES-103	Basic Programming Skills	4-1-0	3	150

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
0 00	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours
Module-1	Algorithm, Representation of Algorithm: Flowchart/Pseudo-code with examples. From algorithms to programs; C Program source code, C Program structure, basic syntax, data types, variables, constants, storage class, syntax and logical errors in compilation, object and executable code, Arithmetic expressions, operators and precedence.	10 Hours
Module-2	Decision making: Conditional Branching, if statement, if else statement, nested if else statement, switch, nested switch statements, Iteration and loops, break, continue, Decision making Application in solving real life problems.	8 Hours
Module-3	Functions, Parameter passing in functions, call by value, idea of call by reference, recursion with examples of Finding Factorial, Fibonacci series, local and global variables, static variables. Experiential Learning: Arduino based Programming: Overview of the Arduino UNO Components, Analog and Digital Read, Controlling output	8 Hours
Module-4	Arrays: Arrays (1-D, 2-D), initialization, Accessing Array Elements, Matrix applications, passing arrays to functions, Character arrays and Strings, Pointers, Pointer arithmetic, dynamic memory allocation, pointer to array and array of pointers, Linear Search, Bubble Sort	8 Hours
Module-5	Structures, Array of structures, union, structure vs union, passing structure to function, File handling: ASCII and binary Files.	
Total		40 Hours

Text Books:

- 1. E. Balagurusamy, Programming in ANSI C, 8th Edition, Tata McGraw Hill, 2019
- 2. Herbert Schild, C: The Complete Reference, Tata McGraw Hill

Reference Books:

- 1. A.K.Rath and A. K. Jagadev, "Data Structures and Program Design using C", 2nd Edition, Scitech Publications, 2011
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication Pvt. Ltd
- 3. Rajaraman, V., Computer Programming in C, PHI Publications
- 4. Simon Monk, Programming Arduino: Getting Started with Sketches, 2nd Edition, McGraw Hill, 2016
- 5. Yashavant Kanetkar, Let Us C, 17th Edition, BPB Publications New Delhi, 2019

CO1	To formulate simple algorithms for problem solving and translate the algorithms to programs.		
CO2	To test and execute the programs and correct syntax and logical errors.		
CO3	To implement different conditional branching and loops for problem solving.		
CO4	To decompose a problem into functions and synthesize a complete program using divide and conquer approach.		
CO5	To use arrays, pointers and structures to formulate algorithms and programs.		
CO6	To apply programming to solve searching and sorting problems.		

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-104	Basic Mechanical Engineering	3-0-0	2	150

Objectives	To expose to the field of Mechanical Engineering, and to acquire the fundamental knowledge in the said field.	
Pre-Requisites Knowledge of Physics, Mathematics and computer programming in Second		
Teaching Scheme Regular classroom lectures with use of ICT as and when required, session		
	planned to be interactive with focus on group task, project planning and video	

Module-#	Topics	Hours
Module-1	Introduction to Engineering Materials and Mechanical Measurement: Engineering Materials: Classification of engineering material, Properties-Physical, Chemical & Mechanical, Composition of Cast iron and Carbon steels, Alloy steels their applications, Composites, Plastics and ceramics. Concepts on Metallurgy. Smart materials. Mechanical Measurement: Concept of measurements, errors in measurement, measurement of Temperature, Pressure, Velocity, and Flow. (Working principle only.) Experiential learning 1. Preparation of Composite material	8 Hours
Module-2	Introduction to Manufacturing Processes History of industrial revolution, introduction to Casting: Sand casting, Die casting, investment casting; centrifugal casting; Metal joining: Soldering, Brazing and Welding, Metal forming: bulk metal forming (rolling, forging, extrusion, wire/bar drawing), sheet metal forming(bending, deep drawing, sheering), Additive Manufacturing: Introduction to 3d printing: working principle, physics of process; process modelling: computer aided process planning for 3d printing; classification: Extrusion(Detail study of Fused Deposited Modelling with video demonstration of working principle of inhouse 3d printer), granular, laminated, light polymerized; Related technologies. Subtractive Manufacturing(working principle, details of machine tools	12 Hours
	and application only): Introduction, Conventional Machining Processes: cutting, turning, milling, drilling, grinding, and boring; Nonconventional Machining Processes: CNC Machining, EDM, ECM, Laser Cutting, Wood router(Detail study and video demonstration of working principle), water jetting. Experiential learning Wood carving of Art CAM using wood router Small project using Metal joining process(Similar and Dis-similar) Casting of different components	

	6.Belt drive, muff coupling	
Module-4	Introduction power transmission: Power transmission devices: Belt, Rope, Gear & Gear drives. Coupling, clutch, brakes. (Working principle only), Mechanical Advantage, Velocity ratio. Experiential learning	8 Hours
	Fluid Properties and their Applications: Fluid properties, Pascal's Law its application, Archimedes Principle, Bernoulli's theorem. Hydraulic machines: turbines, pumps, their types. CO4: Get knowledge of fluid properties and explain working principle of Hydraulic Machines Experiential learning 5. Hydraulic system design and manufacturing using Pascal's Law	
Module-3	Fundamentals of Thermodynamics and Fluid Mechanics: Basics of Thermodynamics, Steam formation& its properties. Evaporation and Condensation, Cryogenics: Dry ice Vs Liquid Nitrogen. Aircraft engines and its classifications, Fuels, Rockets. Application of Thermodynamics: Steam power plant, I.C Engine, Refrigerators and Air- Conditioners (Brief description of different components with Schematic diagram only.)	12 Hours

Text Books:

- T1. Basic Mechanical Engineering by Pravin Kumar, Pearson.
- T2. Text book of Elements of Mechanical Engineering, S T Murthy, Universities press.
- T3. Cengal, Y., Boles, "Thermodynamics", Mc-Graw Hill, 2001.

ReferenceBooks:

- R1. Basic Mechanical Engineering by Basant Agrawal, C M Agrawal, Willey.
- R2. Elements of Mechanical Engineering by J K Kittur and G D Gokak, Willey.
- R3. Engineering Thermodynamics by P. Chattopadhaya, Oxford University Press.
- R4. Basic Mechanical Engineering by .D. Mishra, P.K Parida, S.S.Sahoo, India Tech Publishing.
- R5. Engineering Materials, S C Rangwala, Charotar Publishing House.

Course Outcome

At the end of the course the student will be able to:

CO1	Discuss the Properties of Common Engineering Materials and measuring equipment
CO2	Describe the conventional and advanced Manufacturing process.
CO3	Explain the Working Principle of IC engines and Refrigeration and Air conditioning.
CO4	Get knowledge of fluid properties and explain working principle of Hydraulic Machines
CO5	Explain different power transmission systems.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-105	Basic Civil Engineering	3-0-0	2	150

Objectives	To expose to the field of Civil Engineering, and to acquire the fundamental knowledge in the said field.
Pre-Requisites Knowledge of Physics, Mathematics and computer programming in Second Education	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on group task, project planning and video demonstration.

Module-#	Topics	Hours		
Module-I	Introduction to Construction materials Basics of Civil Engineering & Broad disciplines of Civil Engineering Building components and Materials –Cement, Concrete, Steel,. Concept of smar building, Tiles for flooring, Different Types of Doors and windows, Paints. New and smart Materials – flyash, new-age concrete, recycling of materials.			
Module-II	Field Survey: Scale, plan, map, principles of survey, Linear measurements, Ranging, Compass Survey, Bearing of a line, Levelling, Introduction to Modern Survey Instruments (EDM and Total Station), GIS and GPS (Introduction only). Transportation Railway, Airport, Types of Bridges, concept of Tunnels and Metro rail (underground and overhead engineering - Different modes of transport, classification of road,, Introduction to), Basics of Port and Harbor, Breakwater – Concept of inland waterways.			
Fundamentals of Soil Mechanics, Hydrology Fundamentals of soil classification, properties, foundation (deep and shallow)and types. Fundamentals of Water Resource engineering- sources and Introduction to hydraulic structures like canals, siphons, weirs, dams etc.		10Hours		

Module-IV	Water supply (Experiential Learning) Introduction, sources of water, advantages and disadvantages of water supply, water supply system and its components. Types of flow, Pumps- its types, centrifugal pump its principle, components and its limitations. Pressure Regulator, Working of Pressure Regulator Sensors: Introduction, Types of sensor, uses and use of relay in tanks. Solenoid valve- Solenoid valve types, Solenoid valves working principle, Advanced plumbing Technologies, Plumbing in Building, Plumbing system, Purpose of plumbing system, Plumbing safety tools, Plumbing tools, Safety during work, Fitting and fixtures in domestic building, Plumbing business tools, Valves, Types of joints Waste Water Treatment Sewerage, Characteristics of sewerage, effect of sewerage on ecosystem, waste water treatment, Importance of waste water, its treatment process. Sewerage system, types of sewerage system	12 Hours
-----------	---	----------

TextBooks:

- T1. Basic Civil Engineering, S.Gopi, Pearson.
- T2. Basics of Civil Engineering, M.S. Palanichamy, McGraw Hill.

ReferenceBooks:

- R1. Surveying Vol -1, RAgor, Khanna Publisher.
- R2. Water supply ana Waste water engineering, S.K. Garg.
- R3. Introduction to Bridge Engineering, D. Jhonson Victor.
- R4. Engineering Materials, S C Rangwala, Charotar Publishing House.

Course Outcomes: At the end of this course, the students will be able to:

CO 1	Identify the different properties of building materials		
CO 2	Understanding the different modes of transportation		
CO 3	Study of engineering properties of soil		
CO 4	Analyze of water supply system by sensors and solenoids		
CO 5	Evaluating different types of pumps		
CO 6	Explore the uses of different instruments used in civil engineering work		

Experiential Learning:

- 1. Transparent centrifugal pump.
- 2. Aqueduct, Syphon aqueduct, Super passage, canal syphon, level crossing
- 3. Practical working model of port

- 4. Piping connection.5. Piping network Connection6. Solenoid Valve
- 7. Study of different water sensors.
- 8. Hydraulic bridge9. Fly-ash Bricks.
- 10. New age concrete.- ferroconcrete, roller compacted concrete, FRC

Тур	Code		L-T-P	Credits	Marks
BS	BTBS-T-HS-111	English for Engineers –I	2-0-0	1	100

	To develop the understanding of communication in different context. Z.To identify the basics of professional Writing		
Objectives	3. To acquire basic proficiency in English including reading and listening		
	comprehension, writing and speaking skills.		
Pre-Requisites	NONE		
Teaching Pedagogy Regular classroom lectures with use of the interaction, experiential, activ			
oriented.			

Module-#	Topics	Hours
Module-#	Introduction to Communication 1. Process and Factors of Communication 1.1. History & Significance of Communication 1.2. Communication loop 1.3. Factors Responsible (Sender, Receiver, Channel, Code, Feedback etc.) 2. Verbal and Non-verbal communication 2.1. Verbal Communication 2.2. Non-Verbal Communication (Body language, Paralanguage)	06 hours 3+2+1
	3. Barriers to Communication 3.1. Barriers and Filters 3.2. Types of Barriers (Physical, Psychological, , Cultural Barrier etc. 3.3. Tips to Overcome Barriers Experiential Learning: Non-verbal communication	+1(EL) =7 hour

	Professional Writing	
Module-2	 Letters &E-mail writing 1.1 Block format, 2 E-Mail address 3 Subject Line 4 Organizing the body 5 E-Mail etiquette Notice, Memo, Circular Format of the Notice Writing strategy Using social media for communication Writing blogs What's app messages Experiential Learning : Using social media for communication 	2+3+3 08 Hours
Module-3	Name of the Lessons: 1.A.P.J Abdul Kalam from Wings of Fire, A.P.J Abdul Kalam with Arun Tiwari 2. "Spoken English & Broken English" by Bernard Shaw 3. Life Doesn't Frighten Me Poem by Maya Angelou 4. On Superstitions by A.G.Gardiner	8 Hours

Reference Books:

- R1. An Introduction to Professional English and Soft Skills Das et al.- Foundation Books
- R2. Understanding Human Communication by Ronald B. Adler
- R3. Technical Communication, Fourth Edition-Meenakshi Raman & Sangeeta Sharma
- R4. The Definitive Book of Body Language by Allan Pease
- R5. Silent messages by Albert Mehrabian
- R6. Advanced English Grammar by Martin Hewing
- R7. English Grammar in use-Raymond Murphy

Online Resources:

www.britishcouncil.in http://nptel.ac.in http://eltai.in

CO1	Learn the fundamentals of communication
CO2	Understand the basic professional writing
CO3	Evaluate Literary convention

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-101	Information Technology and Information Systems (IT & IS)	2-0-0	0	100

Objectives	To expose to the fundamental usage of Computer.
Pre-Requisites Basic knowledge of English in Secondary Education	
	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life activities.

Module	Course to be Covered	Hours		
Module 1	Introduction Windows OS, OS Commands and operations, Introduction to MS Office MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles. Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols.			
Module 2	MS-WORD: Mailing tab: Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus. MS-EXCEL: Create workbook, Home tab, Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	5 Hours		
Module 3	MS-EXCEL: Page Layout tab: Margin, Orientation, Paper size, Print area, Background Formulas tab: Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if) MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	5 Hours		
Module 4	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound. Internet Technology: MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	5 Hours		
Module 5	GRAMMERLY: Creating and uploading documents, Editing text Using GrammarlyGO, Formatting text, Checking your document for plagiarism. ChatGPT: Introduction,ChatGPT in general life, Uses and Applications of ChatGPT Blog Topics and Keyword Research, Assist in Generating Copy for a Website			

Proofreading and Editing, Creating WordPress Plugins, Writing and Debugging Code	
TOTAL	24
	Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	To give basic fundamental concept about computer system.	
CO2	To get familiar with MS Windows OS.	
CO3	To get hands on expertise in MS Word.	
CO4	ble to solve mathematical problems systematically using MS excel.	
CO5	Able to design professional presentation using MS PowerPoint.	
CO6	Able to manage the information in computer system using internet technology.	

EXPERIMENTS:

Experiment No.	Course to be Covered	Hours
Experiment-1	Introduction Windows OS, OS Commands and operations, Introduction to MS Office	2 Hours
Experiment-2	MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles.	
Experiment-3	ment-3 MS-WORD: Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols.	
Experiment-4		
Experiment-5		
Experiment-6	xperiment-6 MS-EXCEL: Page Layout tab : Margin, Orientation, Paper size, Print area, Background	
Experiment-7	MS-EXCEL: Formulas tab: Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if)	2 Hours
Experiment-8 MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.		2 Hours
Experiment-9	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound.	
Experiment-10	Internet Technology : MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	2 Hours

Experiment-11	GRAMMERLY: Creating and uploading documents, Editing text Using GrammarlyGO, Formatting text, Checking your document for plagiarism.	2 Hours		
	Experiment-12 ChatGPT: Introduction, ChatGPT in general life, Uses and Applications of ChatGPT, Blog Topics and Keyword Research, Assist in Generating Copy for a Website Proofreading and Editing, Creating WordPress Plugins, Writing and Debugging Code			
	TOTAL	24 Hours		

Reading Material (s)

- 1. IT & IS Lab Manual, Department of CSE, GIFT, Bhubaneswar
- 2. Microsoft Office 2010 Introductory BY Gary B. Shelly, Misty E. Vermaat.

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-102	Constitution of India	2-0-0	0	100

	The objective of this subject is to provide understanding of the basic concepts of Indian Constitution and various organs created by the constitution including their functions. The course acquaints students with the constitutional design of state structures and institutions, and their actual working overtime.	
	Basic knowledge of Indian history, overall idea on India's political system.	
0 00	Regular classroom lectures with use of ICT as and when required and each session is planned to be interactive.	

Evaluation Scheme

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Historical perspective of the constitution of India. Preamble of Indian constitution, Salient features of Indian constitution, Fundamental rights, Fundamental Duties and its legal status, Directive principles of state policy-its importance and Implementation.	8 Hours
Module-2	Federal structure and distribution of legislative and financial powers between the Union and the States, The Union legislature - The Parliament - The Lok Sabha and the Rajya Sabha, Composition, powers and functions, Union executive, President of India (with powers and functions), Vice-President, The Council of Ministers and the Prime Minister - Powers and functions.	6 Hours
Module-3	State Government, The State Legislature - composition, powers and functions, State executive, Governor (with powers and functions).	5 Hours
Module-4	Amendment of the Constitutional Powers and Procedure, Emergency Provisions: National Emergency, President Rule, Financial Emergency. Scheme of the Fundamental Right to Equality Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right to Life and Personal Liberty under Article 21. Local Self Government - Constitutional Scheme in India.	5 Hours

Module-5	The Indian Judicial System - the Supreme Court and the High Court's composition, jurisdiction and functions, Judicial review, Judicial activism, independence of Judiciary in India.	
Total		28 Hours

Text Books:

T1. D. D. Basu, Introduction of Constitution of India, 22nd Edition, LexisNexis, 2015.

T2. K. Subas, An Introduction to India's Constitution and Constitutional Law, 5th Edition, National Book Trust India, 2011.

CO1	Provide basic information about Indian constitution.
CO2	Analyze the legalities and related issues of drafting, adoption and enforcement of the Indian
	Constitution as a fundamental law of the nation and the provisions and privileges of Indian
	Citizenship.
CO3	Understand and judiciously use the fundamental rights and privileges envisaged in the
	constitution.
CO4	Analyze the major dimensions of Indian Political System and to contribute in protecting and
	preserving the sovereignty and integrity of India.
CO5	Know the successful functioning of democracy in India
CO6	Understand their obligations, responsibilities, privileges & rights, duties and the role that they
	have to play in deciding the Administrative Machinery of the country.

Type	Code	Mathematics - II	L-T-P	Credits	Marks
BS	BTBS-T-BS-211	Mathematics - 11	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and		
	concepts of numerical methods to solve the system of linear equations & ordinary		
	differential equations, interpolation, and applications of vector integral calculus.		
Pre-Requisites	A sound knowledge of linear algebra, basic calculus, and matrix algebra.		
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions as planned to be interactive with focus on problem solving activities.		

Module	Topics	Hours	
	Root finding of algebraic and transcendental equations: Bisection method, Secant		
Module-1	and Regula-falsi methods, Newton's method, Fixed point iteration method, Rate of		
	convergence. Experiential learning- Finding the root of transcendental equations		
	using MATLAB.		
	Interpolation: Lagrange interpolation, Newton's divided difference interpolation,		
Module-2	Newton's forward and backward interpolation. Numerical differentiation and	14 Hours	
	Integration: Newton-Cotes quadrature formula, Trapezoidal rule, Simpson's rule,		
	2-point and 3-point Gauss Legendre rule. Euler method, Modified Euler method.		
	Experiential learning- Evaluation of numerical integrals and solution of initial		
	value problems.		
	Beta and Gamma functions, Vector Integral Calculus: Line Integrals,		
Module-3	Independence of Path, Double Integrals, Green's theorem with applications.		
	Series Completion, Coding-Decoding, Data Sufficiency, Basic concepts on		
Module-4	Probability and statistics.		
	Total	45 Hours	

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, A Modern Approach to Verbal & Non-verbal reasoning, S. Chand publication.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.
- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. B. P. Acharya, R. N. Das, A Course on Numerical Analysis, Kalyani Publishers
- R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley

Online Resources:

- 1. https://nptel.ac.in/courses/127106019
- 2. https://nptel.ac.in/courses/111102111
- 3. https://nptel.ac.in/courses/111105122
- 4. https://nptel.ac.in/courses/111105121
- 5. https://nptel.ac.in/courses/111105134

CO1	Apply the numerical methods to find the approximate solutions of algebraic and transcendental equations.
CO2	Evaluate the real time problems using MATLAB.
CO3	Solve the numerical solution of differential equations and use of various techniques for evaluating the integrals.
CO4	Calculate line integrals in two dimensions for differential forms and also calculate double integrals in Cartesian and polar coordinates over the domains.
CO5	Know the basic concepts of verbal, non-verbal reasoning and logical ability for better employability.
CO6	Understand the basic concepts of mathematical theory of probability.

Type	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTES-T-ES-203		4-1-0	3	150

Objectives Exploring basic data structures concept used in Industries	
Pre-Requisites	Knowledge of Mathematics in Secondary Education and basic Programming concept.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours	
Module-1	Introduction: Basic Terminologies: Algorithm Analysis: Mathematical Background, Model, Analyze, Running Time Calculations, Asymptotic Notations, classification of data structure. Basic data st ructure:1d-Array and 2d-Array Data Structure Operations: insertion, deletion, traversal Sparse matrix, address calculation of Array, ADT(Abstract Data type),DMA(Dynamic memory allocation),pointer, Self-referential structure. A comparison between DMA and SMA. De-allocation Strategy, Buddy System, Compaction.	10 Hours	
Module-2	Stacks and Queues: ADT Stack array representation and its operations: Algorithms Applications of Stacks: Expression Conversion and evaluation of expression and corresponding algorithms, Experiential Learning: application of stack. Types of Queue: Simple Queue, Circular Queue, Priority Queue ADT queue, Array representation and Operations on each types of Queues: Algorithms and their analysis, application of queue. (Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm) Priority Queues.		
Module-3	Linked Lists : Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.		
Module-4	Sorting and searching: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Experiential Learning: Insertion Sort, Merge Sort, Quick Sort, Heap Sort, Radix sort; Performance and Comparison among all the methods, Searching: Experiential Learning: Linear search, Binary search and time complexity and space complexity analysis, Hashing: Hash function and technics of		

Total		40 Hours
	Shortest path algorithm: Dijkstra's algorithm, topological sorting.	
	classification of graph Minimum spanning tree (Kruskal and prims algorithm),	
	representation), Graph search and traversal algorithms and complexity analysis,	
	Graph: Basic Terminologies and Representations (Adjacency matrix and linked list	
	Applications of all trees.	
	Tree: definitions, algorithms and analysis, Red black trees: definition and operation,	
Module-5	their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+	
	Search Tree, Tree Traversing, AVL Tree; Tree operations on each of the trees and	6 Hours
	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Binary	

Text Books:

- T1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press
- T2. Data Structures with C (Schaum's Outline Series), Seymour Lipschutz, TMH

Reference Books:

- R1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning
- R2. Data Structures And Algorithms A.V.Aho, J. E. Hopcroft, and J. D. Ullman, \(\| \), Pearson Education, First Edition Reprint 2003R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R3. How to solve it by Computer, 2nd Impression by R. G. Dormey, Pearson Education
- R4. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education

CO1	Understand the concept of Dynamic memory management, data types, algorithms, Big O
COI	notation.
CO2	Understand basic data structures such as arrays, linked lists, stacks and queues.
CO3	Understand the implementation and application of linear data structure
CO4 Understanding of tree traversal techniques and their application	
CO5 Understand the graph traversal and its application In real life.	
CO6	Understand Algorithm for different sorting, searching techniques and their running
C00	complexity, and basic concept of hash function

Type	Code	English for Engineers-II	L-T-P	Credits	Marks
HS	BTBS-T-HS-211	English for Engineers-II	2-0-0	1	100

	To understand the nuances professional Communication
Objectives	To prepare students for real world interaction
	To enhance the soft skill competency of learners
Pre-Requisites	To have a common understanding of concepts of communication.
Teaching Pedagogy	Real world-based teaching learning pedagogy.

Module-#	Topics	Hours
Module-1	 Introduction to Professional Communication Patterns of Communication 1.1 Formal &Semi Formal: Vertical, Horizontal, Diagonal communication 1.2 Informal: Grapevine 1.3 External and Internal Communication Experiential Learning: Patterns of Communication 	3+1(EL) 4Hours
Module-2	Employment Communication & Soft skill 1.1. Cover Letter and Resume' Building, Types of Resumes: Traditional & Electronics 1.2. Presenting to the audience :4ps 1.3. Cross Cultural Competency 1.4. Group Discussion, Types of GD, Do's and don'ts 1.5. Interview, Types of Interviews, How to Prepare for an Interview Experiential Learning: Cross Cultural Competency	2+2+2+2+2 =10+4(EL) Hours

	<u>Literature Appreciations</u>	
Module-3	 Steve Jobs by Isaacson Walter An Interview with Microsoft CEO: Satya Nadella by Sudipta Sengupta, TNN, March 10,2023 	6 Hours+ 1(EL)=7Hr
	Experiential Learning: Book Review	

Reference Books:

- R1. Corporate Soft Skills-Sarvesh Gulati- Rupa Publications
- R2. Bridging the Soft Skills Gap- Brucetulgan
- R3. Excellence in Business Communication John V. Thill, Courtland Bovee
- R4. Simply Said: Communicating Better at Work and Beyond by Jay Sullivan
- R5. Steve Jobs by Isaacson Walter

Online Resources:

https://communicationmgmt.usc.edu

https://nptel.ac.in

www.britishcouncil.org

https://eltai.ac.in

https://in.coursera.

CO1	Understand the various forms and Channels of communication in a corporate world
CO2	Develop skills to meet the placement challenges
CO3	Implement different forms of writing for professional needs
CO4	Acquiring skills set to sustain the professional careers.

Type	Code	Elements of Engineering	L-T-P	Credits	Marks
BS	BTBS-P-BS-102	Physics Laboratory	0-0-2	1	100

Objectives	The laboratory should help students to understand the role of direct observation in physics and to distinguish between inferences based on theory and on the outcomes of experiments.
Pre-Requisites	Knowledge of Physics in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Determination of acceleration due to gravity (g) by bar pendulum.	2 Hours
Experiment-2	Determination of rigidity modulus by using Barton's apparatus.	2 Hours
Experiment-3	Determination of surface tension of a given liquid by capillary rise method.	2 Hours
Experiment-4	Determination of wavelength of an unknown monochromatic source of light using Newton's ring apparatus.	2 Hours
Experiment-5	Plotting of V~I characteristics of PN junction diode.	2 Hours
Experiment-6	Determination of Young's modulus by using Searle's apparatus	2 Hours
Experiment-7	Plotting of input and output characteristics of BJT (Bipolar junction	2 Hours
Experiment-8	Determination of grating element of a plane diffraction grating.	2 Hours
Experiment-9	Determination of co-efficient of thermal conductivity of a bad conductor by Lee's disc method.	2 Hours
Experiment-10	Verification of laws of vibrations in a stretched string using Sono metre.	2 Hours
	BEYOND SYLLABUS	2 Hours
Experiment-11	To find out the resistance of unknown wire by using Meter bridge.	2 Hours
Total		22 Hours

CO1	Understand the laws to various process and real system.
CO2	Study basics of semiconductor & devices and their applications in different areas.
CO3	Distinguish the importance of different properties of material.

CO4	Design new instruments with practical knowledge.				
CO5	Analyze, interpret and summarize the experimental results and compare with theoretical				
CO6	Troubleshoot effectively in laboratory settings.				

Indicative Projects

- 1. To make a periscope to understand the laws of reflection.
- 2. To make an electromagnet.
- 3. To make a line following Robot.
- 4. To make a portable Mobile charger.
- 5. To make a Rain Alarm /soil moisture Detector.
- 6. To make an Automatic street light.
- 7. To make a proto type solar panel.
- 8. To make a gas leakage detector.
- 9. To make a temperature sensor.
- 10. To build an earthquake alarm.
- 11. To make a coin cell by using super capacitor material.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-P-BS-103	Applied Chemistry Laboratory	0-0-2	1	100

Objectives	The laboratory will help the students on the volumetric analysis, calculations based on mass- volume relation etc. The students will get knowledge on the synthesis of different medicines, preparation of soap & detergents etc. The students will get knowledge on the operation of different equipment's.
Pre-Requisites	Knowledge of chemistry in Secondary Education.
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	# Topics		
Experiment-1	Standardization of KMnO4 by using sodium oxalate. Determination of Fe2 ⁺ ion in a double salt.	2 Hours	
Experiment-2	Preparation of Aspirin	2 Hours	
Experiment-3	To determine Dissolved oxygen in a given sample of water	2 Hours	
Experiment-4	Determine the amount of Sodium Hydroxide and Sodium carbonate in the given solution using Standard acid	2 Hours	
Experiment-5	Estimation of Ca ²⁺ ion in a sample of limestone	2 Hours	
Experiment-6	Determination of partition coefficient of I ₂ between benzene and water.	2 Hours	
Experiment-7	Experiment-7 Determination of flash and fire point of an oil by Pensky Martine's apparatus.		
Experiment-8	Determination of viscosity of lubricating oil by Redwood viscometer.	2 Hours	
Experiment-9	Determination of available chlorine in a sample of bleaching powder	2 Hours	
Experiment-10	Determination of TH value of water by EDTA method.	2 Hours	
	BEYOND SYLLABUS		
Experiment-11	Preparation of soap and detergent.	2 Hours	
	Total	22 Hours	

CO1	Acquire knowledge on the basic volumetric analysis.
CO2	Classify various fuels based on combustion parameters and understand the working Principle based on their properties.
CO3	Know the importance of analytical techniques, instrumentation and applications
CO4	Impart knowledge on of water quality parameters and treatment of water.
CO5	Acquire Knowledge about synthesis and preparation of drugs, soap etc.

Indicative Projects

- 1. Preparation Detergent Powder From Paddy Husk
- 2. Quantity of Presence of Casein in Different Samples of Milk
- 3. Preparation of Organic Dye.
- 4. Preparation of Toilet Soaps
- 5. Presence of Oxalate Ions in Guava Fruit and Different Stages of Ripening.
- 6. Sterilization of Water Using Bleaching Powder.
- 7. Preparation of ash brick.
- 8. Preparation of Gelatin.
- 9. Preparation of Paracetamol.
- 10. Preparation of Ink.
- 11. Effect of Potassium Bisulphate as a Food Preservative.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-101	Basic Electrical Engineering Laboratory	0-0-2	1	100

Objectives	To train the students in conducting load tests on electrical circuit and equipment's To gain practical experience in characterizing electrical machinery.
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Study of Different Electrical measuring Instruments and other electrical equipment	2 Hours
Experiment-2	Verification of thevenin's theorem using DC circuits.	2 Hours
Experiment-3	Verification of Superposition theorem theorem using DC circuits.	2 Hours
Experiment-4	Verification of Maximum power transfer theorem using DC circuits.	2 Hours
Experiment-5	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	
Experiment-6	Verification and calculation of Resonance frequency in series R-L-C circuit.	2 Hours
Experiment-7	Connection and Demonstration of Domestic Wiring System	
Experiment-8	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers	
Experiment-9	Power and phase measurements in three phase system by two wattmeter method	
Experiment-10	OC and SC test on single phase transformer	2 Hours
	BEYOND SYLLABUS	
Experiment-11	Verification of Ohm's Law	2 Hours
Experiment-12	Experiment-12 Verification of B-H curve	
Total		24 Hours

Online Resources:

- 1. http://vlabs.iitkgp.ernet.in/be/
- 2. http://sl-coep.vlabs.ac.in/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify different Electrical Instruments and measure different parameters.
CO2	Study connection and demonstration of DC generators, motors and wiring systems.
CO3	Study design and connection of Different Lamps
CO4	Identify active and passive electronic components and handle measuring instruments like
CO5	Design different circuits using diode, BJT and opamps.
CO6	Design and analyze logic gates

Indicative Projects

SL. NO.	NAME OF THE PROJECT
1	Mobile Charger
2	Extension Board
3	Multiple USB Port
4	Brushless DC Motor Driver
5	Small Transformers Upto 7V.
6	Small Model Of Bio-Gas Plant
7	Temperature Control 12v DC Fan
8	Making Of Led Bulbs.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-102	Basic Electronics Engineering Laboratory	0-0-2	1	100

Objectives	To train the students in conducting load tests on electrical machines	
	To gain practical experience in characterizing electronic devices	
	To train the students to use CRO and DSO for measurements	
Pre-	Knowledge of Physics and Mathematics in Secondary Education	
Requisites		
Teaching	Regular practical classes with use of virtual lab as and when required, sessions are	
Scheme	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	Experiment-1 Study of Different Electrical measuring Instruments and other electrical equipment	
Experiment-2	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	2 Hours
Experiment-3	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers.	2 Hours
Experiment-4	Connection and Demonstration of Domestic Wiring System.	2 Hours
Experiment-5	Model Study & Connection of Different Lamps (Mercury Vapor Lamp, Tungsten, LED Bulbs, Fluorescents, CFL)	2 Hours
Experiment-6	A:- Identification of electronic components, devices and Basic Sensors, B:- Study and use of CRO/ DSO, Function generator to view and measure different wave forms.	2 Hours
Experiment-7	Design of Simple Diode Circuit and Study of V-I characteristics of semiconductor Diode & calculation of DC and AC Resistance	2 Hours
_	Design of Half – wave rectifier and full wave rectifier circuits, and calculation of efficiency	2 Hours
_	Design of inverting and non- inverting amplifiers using Op-Amp to view and measure waveforms	2 Hours
Experiment-10	Study and truth table verification of logic gates.	2 Hours
	BEYOND SYLLABUS	
	Design of simple BJT Bias circuit to draw VI characteristics (input & output) of a NPN transistor (in CE configuration)	2 Hours
Experiment-12	Verification of Ohm's Law	2 Hours
	Total	24 Hours

Online Resources:

- http://vlabs.iitkgp.ernet.in/be/
 http://sl-coep.vlabs.ac.in/

3.

CO1	To identify different Electrical Instruments and measure different parameters.
CO2	To study connection and demonstration of DC generators, motors and wiring systems.
CO3	To study design and connection of Different Lamps
CO4	To identify active and passive electronic components and handle measuring instruments like CRO and DSO.
CO5	To design different circuits using diode, BJT and opamps.
CO6	To design and analyze logic gates

Indicative Projects

SL.	NAME OF THE PROJECT
NO.	
1	Night light using LDR.
2	Automatic Fan ON/OFF using Temperature Sensor.
3	Moisture Controller using Moisture Sensor.
4	Fire Alarm using Temperature Sensor.
5	Light ON /OFF using Piezo Sensor.
6	Clap sound Operated using Sound Sensor.
7	Rain Detector
8	Power supply Circuit
9	Touch less Doorbell
10	Motion Detector using Ultrasonic Sensor

Type	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-103	Basic Programming Skills Laboratory	0-0-4	2	100

Objectives	Γο expose to the field of Problem Solving and Programing		
Pre-Requisites	Knowledge of Mathematics in Secondary Education		
0 00	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life problem solving activities.		

Module-#	Topics	Hours	
Experiment-1	Familiarity with basic UNIX/LINUX command, vi editor. Sample C Program.		
Experiment-2	Programs on arithmetic expressions, operators, and precedence.	2 Hours	
Experiment-3	Programs on Conditional Branching.	2 Hours	
Experiment-4	Programs on Loops.	2 Hours	
Experiment-5	Programs on single dimensional array.	2 Hours	
Experiment-6	Programs on two-dimensional array.	2 Hours	
Experiment-7	Programs on Functions.	2 Hours	
Experiment-8	Programs on Recursive Functions.	2 Hours	
Experiment-9	Programs on Pointers.	2 Hours	
Experiment-10	Programs on Dynamic Memory Allocation.		
Experiment-11	Programs on Structure.	2 Hours	
Experiment-12	Programs on Union.	2 Hours	
Experiment-13	Programs on File Handling.	2 Hours	
Experiment-14	Implementation of Linear search.	2 Hours	
Experiment-15	Implementation of sorting algorithm: Bubble Sort	2 Hours	
Experiment-16	Arduino Programming – Introduction to Sensors, Introduction to Microcontrollers.		
Experiment-17	Programing, Serial Communication	2 Hours	
Experiment-18	Arduino based Project	2 Hours	

Total	38 Hours
	00 110 011

Course Outcomes: At the end of this course, the students will be able to:

CO1	Remember basic understanding of computer and basic concepts of running programs.	
CO2	Understand the concepts of decision making and looping for solving problems.	
CO3	Learn to concise and precise on implementing pseudo code using functions	
CO4	Illustrate the usages of array, function and pointer in programming.	
CO5	Select the user define data type structure, union and enum for problem solving.	
CO6	Develop projects using different file handling functions.	

Projects using C Programing

- 1) Unit Converter
- 2) Customer Billing System in a Shopping Mall
- 3) Banking Management System
- 4) University Grading System
- 5) Bus Ticket Reservation System
- 6) Home Automation System
- 7) Digital Wall Clock
- 8) Book Support Automation
- 9) Lab Management System
- 10) Nursery Management System

Arduino based Project

- 1) Obstacle detection using Arduino
- 2) Controlling 4 LEDs to make different patterns
- 3) Voice Activation System
- 4) Use Humidity Sensor using Arduino
- 5) Arduino Based Color Detector
- 6) Touch Dimmer Switch Circuit Using Arduino
- 7) Wireless Door Bell
- 8) Arduino Traffic Light Controller
- 9) Frequency Counter Using Arduino
- 10) Arduino 4-Digit 7-Segment LED Display
- 11) Arduino based Digital Thermometer
- 12) Arduino Light Sensor
- 13) Portable Ultrasonic Range Meter
- 14) Security Alarm System Using Arduino
- 15) Arduino Alarm Clock
- 16) Interfacing LCD with Arduino

Type	Code	Basic Mechanical Engineering Laboratory	L-T-P	Credits	Marks
ES	BTBS-P-ES-104		0-0-2	1	100

	To train the students in conducting experiment and get acquainted with different measuring devices, gain practical experience on Refrigerator, IC engine, Hydraulic Machines, Power transmission system and Gear trains. Experience application of Bernoulli's theorem and Meta center.	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education	
Teaching Scheme	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	Validation of Bourdon tube pressure guage with U-tube Manometer	
_	Verification of Flow measuring apparatus (Venturi meter/ orifice meter/ rota meter)	2Hours
Experiment-3	Determination of COP of Domestic refrigerator	2 Hours
-	Draw valve timing diagram of two stroke & four stroke petrol and diesel engine	2Hours
Experiment-5	Verification of Bernoulli's Theorem	2 Hours
Experiment-6	Determination of Meta centre	2 Hours
Experiment-7	Determination of mechanical efficiency of Pelton & Francis Turbine	2 Hours
Experiment-8	Comparison of efficiency of Centrifugal pump apparatus, Reciprocating	2 Hours
Experiment-9	Determination of speed ratio of Simple ,Compound & reverted Gear train	2 Hours
Experiment-10	Demonstration of power transmission system	2 Hours
Total		20 Hours

At the end of the semester students will able to

CO1	Experience different pressure and flow measuring instruments
CO2	Experience working principle of refrigerator and IC engines
CO3	Get knowledge about application of Bernoulli's Theorem and Meta centre
CO4	Get knowledge of different types of hydraulic machines
CO5	Experience different types gear trains and able to find out mechanical advantage and gear
CO6	Get idea of power transmission system

Indicative Projects (Mechanical)

- 1. Component Preparation using 3D Printing
- 2. Specimen preparation technique for Metallurgical study.
- 3. To prepare a ship model for verification of Archimedes principle.
- 4. Model of Steam power plant.
- 5. Overhead gantry crane of 3-axis movements.
- 6. Leading & Trailing brake arrangement in Drum Brake
- 7. High speed reduction in gear drive by using worm & worm wheel.
- 8. Specimen preparation and its test in UTM.
- 9. Wind Turbine Model.
- 10. Preparation hexagonal headed Bolt (Facing & Turning)
- 11. Specimen preparation and its test in Fatigue testing machine.
- 12. Water turbine Project Model
- 13. Preparation hexagonal headed Bolt (Step Turning & Thread Cutting)
- 14. Preparation of Components/names in CNC Wood Router
- 15. Bio-fuel preparation and Study.
- 16. Compound gear train using by using Spur gear.
- 17. Fast and loose pulley arrangement using Belt drive
- 18. Development of cone clutch for power transmission.
- 19. Conversion of Reciprocating to rotary motion using Crank & Connecting rod.

Type	Code	Basic Civil Engineering Laboratory	L-T-P	Credits	Marks
ES	BTES-P-ES-102		0-0-2	1	100

Objectives	To train the students in conducting different test on engineering materials.	
	To gain practical experience in characterizing soil and handling hydraulic machines.	
	o train the students to use different measuring instruments.	
Pre-Requisites	Knowledge of Physics and Chemistry in Secondary Education	
	Regular practical classes with use of virtual labas and when required, sessions are planned to be interactive with focus on problem-solving activities.	

Module-#	Topics	Hours
Experiment-1	Water absorption test of brick.	2 Hours
Experiment-2	Compressive strength of Brick.	2 Hours
Experiment-3	Determination of Specific gravity of soil	2 Hours
Experiment-4	Sieve Analysis of Soil.	2 Hours
Experiment-5	Study of different instruments used in survey.	2 Hours
Experiment-6	Compressive strength of Concrete.	2 Hours
Experiment-7	Study of Different types of pipe fittings	2 Hours
Experiment-8	Measurement of bearing of a line.	2 Hours
Experiment-9	Study of Solenoid Valve	2 Hours
Experiment-10	Study of Sensors.	2 Hours
	BEYOND SYLLABUS	2 Hours
Total	•	20 Hours

CO-1	Identify the different properties of building materials
CO-2	Understanding the different modes of transportation
CO-3	Study of engineering properties of soil
CO-4	Analyze of water supply system by sensors and solenoids
CO-5	Evaluating different types of pumps
CO-6	Explore the uses of different instruments used in civil engineering work

Indicative Projects (Civil)

- 1. Intelligent transportation system. prototype
- 2. Glass fiber reinforced concrete.
- 3. pH test of drinking water in gift campus.
- 4. Preparation of building blocks.
- 5. Identification of different parts of dam prototype
- 6. Pavement layer identification prototype
- 7. Concept of suspension bridge –prototype
- 8. Construction of English bond in cement mortar.
- 9. Study of properties for the locally available Soil .
- 10. Testing of compressive strength of the local stone in Khordha.
- 11. Admixtures used in RMC visit to plant
- 12. Preparation of fly ash brick.
- 13. Seasoning of timber.
- 14. Types of timber used in construction.
- 15. Tensile strength test of steel in construction
- 16. Identification of components of a building prototype
- 17. Various field test of cement.

Type	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-104	Engineering Graphics with Auto-CAD	0-0-3	1.5	100
		Laboratory			

9	To develop the ability to produce simple Engineering Drawings based on current practice and to increase the skill to read the Product, Manufacturing, and Construction drawings used in Industries.	
Pre-Requisites	Basic Knowledge on simple Geometry And shape of Simple Solid's	
Teaching	Regular practical classes with use of virtual labs and when required sessions are	
Pedagogy	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	To prepare a sheet on Lines and their uses.	3Hours
Experiment-2	To prepare a sheet on Lettering, dimensioning.	3Hours
Experiment-3	To prepare a sheet on Projection of point and lines.	3Hours
Experiment-4	To prepare a sheet on Projection of planes & Solids.	3Hours
Experiment-5	To draw Lines/Planes/ solids using Auto CAD.	3Hours
Experiment-6	To prepare a sheet on section of Solid and development of surfaces.	3Hours
Experiment-7	To draw the Ortho graphics projections of solids and sectioning using Auto CAD	3Hours
Experiment-8	To Prepare a sheet on isometric projections.	3Hours
Experiment-9	To draw isometric view of solids using Auto CAD.	3Hours
Experiment-10	To prepare a sheet on Building Drawing.	3Hours
	BEYOND SYLLABUS	
Experiment-11	To draw Ortho Graphic views of standard Isometric Solids.	3 Hours
Total		33 Hours

After completing this course the students should be able to:

CO1	Understand the visual aspect of engineering drawing, scales and Orthographic Projections
CO2	Acquire knowledge on projection of points, lines and plane surfaces and solids.
CO3	Understand the basics of Auto CAD, Commands and Toolbar.
CO4	Apply modern engineering tools like Auto CAD and creating working drawings on sectioning
CO4	of Solids and development of surfaces.
CO5	Able to draw Isometric view of standard Solids using Auto CAD.
CO6	Apply the knowledge to create building drawings

Indicative Projects

- 1. 2D Drawing from Simple 3D Object With given Specification.
- 2. Component Diagram of Simple Physical Sheet Metal Part, Worm Gear, Hub-Shaft.
- 3. Nut-Bolt-Washer assembly, simple Plastic component
- 4. 2D Drawing from Simple 3D Object of Agriculture component..
- 5. Drawing of simple Storage Bin/Silo.
- 6. Drip Layout Sketch.
- 7. Drawing of Rooftop Garden Planning
- 8. Drawing of switch, Led monitor.
- 9. Drawing of Plug socket, Diode & Transistor.
- 10. House Wiring Diagram For a room having 1-Lamp, 1-Fan and 1-Plug socket.
- 11. 2D drawing of Disc Antenna, Common electronics components
- 12. 2D drawing of Electronics components symbol diagram with circuit.
- 13. Drawing Of All Simple Graphic Element & Monitor stand..
- 14. Drawing monitor
- 15. 2D drawing of Keyboard and CPU.

Ty	e Code		L-T-P	Credits	Marks
E	BTES-P-ES-105	Workshop Practice –I Laboratory	0-0-3	1.5	100

- · · · · · · · · · · · · · · · · · · ·	The laboratory should help students to understand the role of different tools & its function for different operation by manually or by machine to get different job as required	
Pre-Requisites	Knowledge of different geometry in Secondary Education	
J	Regular practical classes with use of virtual labs and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours	
Experiment-1	To make a Square from the given mild steel piece	3 Hours	
Experiment-2	To make a V-Square fit from the given mild steel piece	3 Hours	
Experiment-3	To prepare a Lap Joint with Electric Arc welding.	3 Hours	
Experiment-4	To prepare a butt Joint with V-Groove Electric Arc welding. Method.	3 Hours	
Experiment-5	To prepare butt/T-joint by gas welding	3 Hours	
Experiment-6	To prepare joint by Soldering /Brazing.	3 Hours	
Experiment-7	To prepare a job on given specimen in machine shop. (turning, threading ,knurling,milling,drilling and shaping	3 Hours	
Experiment-8	To make the Mortise &tenon –joint wood	3 Hours	
Experiment-9	To make the dovetail joint on wood.	3 Hours	
Experiment-10	To make tray from sheet metal	3 Hours	
	BEYOND SYLLABUS	3 Hours	
Experiment-11	To make funnel in sheet metal	3 Hours	
Total		33 Hours	

After completing this course the students should be able to:

CO1	Learn the safety measures, different tools and equipment used in mechanical workshop.
CO2	Understand the concept of metal joining process and its engineering application.
CO4	Improve understanding of various fitting jobs & its application.
CO4	Understand the various machining process in Machine shop.
CO5	Learn Hands on practices & Job making in Carpentry Shop.

Discuss the application of Sheet metal Operation.

CO₆

Indicative Projects

- 1. To make Gas cylinder stand by M.S. flat
- 2. To make Refrigerator stand by wooden plank
- 3. To make Wooden table
- 4. To make Partial Parshall flume (Venturi)
- 5. To make Drop spill way(wooden)
- 6. To make Indigenous plough(wooden)
- 7. To make Tray drier(sheet metal)
- 8. To make T.W. switch board for three switches and one socket
- 9. To make Sheet metal box to conduit wiring
- 10. To make Simple open water turbine
- 11. To make Soldering rod
- 12. To make Monitor stand
- 13. To make Phone or Tab stand
- 14. To make Support IOT kit implementation in ceiling fan hanging support rod
- 15. To make multimeter board.

Type	Code	English for Engineers –I (Laboratory)	L-T-P	Credits	Marks
BS	BTHS-P-HS-111	English for Engineers –1 (Laboratory)	0-0-2	1	100

	To develop the skills in communication.
	To evaluate the LSRW skills with efficiency.
Objectives	To distinguish the sub skills of reading comprehension for better understanding.
	To implement the process of effective writing.
Pre-Requisites	To have basic knowledge on LSRW skills
Teaching Pedagogy	Regular sessions are planned to be interactive with examples to be acquainted with different types of communication context

SL N0	NAME OF THE ACTIVITY	HOURS
ACTIVITY 1	Ice Breaking & Self- Introduction	2 Hours
ACTIVITY 2	The Raman Effect, Reading: Task1- Task 3, Vocabulary: Task4- Task 5 (Prefixes and Suffixes)	2 Hours
ACTIVITY 3	The Raman Effect, Grammar: Identifying Common Errors in Writing. (Task 6 to Task 15)	2 Hours
ACTIVITY 4	The Raman Effect, Writing: (Task 16 to Task 29) Paragraph Writing	2 Hours
ACTIVITY 5	Ancient Architecture, Vocabulary: Task1 to Task 3 (Synonym and Antonym), Grammar: Subject-verb Agreement. (Task 4 to Task 7)	2 Hours
ACTIVITY 6	Ancient Architecture ,Writing: Task11 to Task 18 (Formal Letter an)	2 Hours
ACTIVITY 7	Sounds of English	2 Hours
ACTIVITY 8	Sounds of English	2 Hours
ACTIVITY 9	Role Play	2 Hours
ACTIVITY 10	Debate 2 Hours	

CO1	Develop the understanding of language	
CO2	Discuss the rules of language for effective communication	
CO3	Analyze the pronunciation of English language	
CO4	Recognize different forms of formal writing	

Type	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTES-P-ES-203	Laboratory	0-0-4	2	100

Objectives	Exploring basic data structures such as stacks and queues	
Pre-Requisites	Knowledge of Mathematics in Secondary Education and basic Programming concept.	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.	

Module-#	Topics	Hours	
Experiment-1	Write a C program to perform matrix addition and multiplication using array	2Hours	
Experiment-2	Write a C program to create a stack using an array and perform	2Hours	
	(i) push operation		
	(ii) pop operation		
Experiment-3	Write a C program to create a queue and perform	2Hours	
	(i) Push		
	(ii) Pop		
	(iii) Traversal		
Experiment-4	Write a C program that converts infix expression into postfix expression	2Hours	
	Using Stack operations.		
Experiment-5	Write a C program that evaluates postfix expression using Stack operations	2Hours	
Experiment-6	Write a C program that uses functions to perform the following operations on	2Hours	
	Single linked list:		
	(i) Creation		
	(ii) Insertion		
	(iii) Deletion		
	(iv) Traversal		
Experiment-7	Write a C program that uses functions to perform the following operations on	2Hours	
	Double linked list:		
	(i) Creation		
	(ii) Insertion		
	(iii) Deletion		
	(iv) Traversal in both ways		
Experiment-8	Write a C program that uses functions to perform the following operations on	2Hours	
	Binary Search Tree:		
	(i) Creation		

on for a Key value in a given list of integers	Iours			
on for a Key value in a given list of integers	Iours			
on for a Key value in a given list of integers	Iours			
-				
recursive and non-recursive functions to				
Write C program that use both recursive and non-recursive functions to				
ation for a Key value in a given list of				
t Bubble Sort method to sort a given list of 2H	Iours			
ts Quick Sort method to sort a given list of 2H	Iours			
integers in ascending order				
nts Insertion method to sort a given list of 2H	Iours			
ts merge sort method to sort a given list of 2H	Iours			
nts heap sort method to sort a given list of 2H	Iours			
ts selection sort method to sort a given list 2H	Iours			
ts merge sort method to sort a given list of ts heap sort method to sort a given list of 2H	Ioui Ioui			

CO1	To insert and delete elements from appropriate position in an array.	
CO2	To search an element and print the total time of occurrence in the array	
CO3	To represent a Sparse Matrix.	
CO4	To delete all occurrence of an element in an array.	
CO5	Array implementation of Stack.	
CO6	Array implementation of Linear Queue.	

Indicative Projects Arduino based Project

- 1) Contacts directory System
- 2) Texting editor relied on Stacks
- 3) BST which follows the Memorization procedure
- 4) Search system (in Library)
- 5) Snakes and Ladders Game
- 6) Sorted_double_sentinel_list
- 7) Phone directory application using doubly-linked lists
- 8) Spatial indexing with quadtrees
- 9) Numerical representations with random access lists
- 10) Stack-based text editor
- 11) Personal Diary Management System

12) 13) 14) 15)	Tic-Tac-Toe Game Tank Game Travel Agency Management System Pharmacy Management System	
		Page 64 of 66

Type	Code			Credits	Mark
BS	BTBS-P-HS-211	English for Engineers –II (Laboratory)	0-0-2	1	100

Objectives	To equip the students with different forms of professional writing To acquaint them with interpersonal etiquette to face corporate challenges To understand the nuances of GD-PI
Pre-Requisites	Basic knowledge of applications of communication
Teaching Pedagogy	Application oriented, task based, need based, teaching Pedagogy

Activity No	Activity Name	Hours		
Activity: 1	ctivity: 1 Blue Jeans Sub Skills of Reading: Task14- Task 15			
Activity:2	How a Chinese Billionaire Built Her Fortune Vocabulary: Task1 to Task 3 (Technical and Computer related Terms)			
Activity:3	How a Chinese Billionaire Built Her Fortune Writing: Task12 to Task 14(Report)			
Activity:4 Sop practice,		2 Hours		
Activity:5	Proposal Writing	2Hours		
Activity:6	Activity:6 Oral Presentation 1			
Activity:7	Oral Presentation 2	2 Hours		
Activity:8	Group Discussion1	2 Hours		
Activity:9	Group Discussion 2	2 Hours		
Activity:10	Mock Interview	2 Hours		
Total		20 Hours		

CO1	Develop knowledge in interpersonal communication.
CO2	Develop skills for corporate readiness.
CO3	Implement the different forms of professional correspondence.
CO4	Apply English grammar and essentials of language skills as per present requirement.

Syllabus for B.Tech (2nd Year) (2023 Admission Batch)

Electronics and Communication Engineering

(Approved by Academic Council and Board of Studies)

GIFT Autonomous Bhubaneswar

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela)
Recognised under section 2(f) of the UGC act, 1956
At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pincode: 752054

2nd Year Course Structure

Third Semester							
Theory							
Sl. No.	Categ ory	Course Code	Course Title	WCH L-T-P	Credi t		
1	BS	BTBS-T-BS-301	Mathematics -III	4-0-0	3		
2	PC	BTEC-T-PC-301	Digital Electronics	4-0-0	3		
3	PE	BTEC-T-PE-301	Semiconductor and optoelectronic Devices	4-0-0	3		
4	PC	BTEC-T-PC-302	Signals & Systems	4-0-0	3		
5	HS	BTBS-T-HS-301/ BTBS-T-HS-302	Organizational Behavior/Engineering Economics	3-0-0	3		
6	PE	BTCS-T-ES-301	Object-Oriented Programming using JAVA	4-0-0	3		
7	AEC	BTSC-T-AET-301	Ability Enhancement Training-B	2-0-0	1		
8	MC	BTMC-T-MC-301	Essence of Indiar Knowledge Tradition-I	2-0-0	0		
			Total Hours/ Credit (Theory)	27	19		
	Practical						
1	PC	BTEC-P-PC-301	Digital Electronics Laboratory	0-0-2	1		
2	РС	BTEC-P-PC-302	Signal and system Laboratory	0-0-2	1		
3	PE	BTCS-P-ES-301	Object-Oriented Programming using JAVA Laboratory	0-0-2	1		
4	PS	BTPS-P-PS-301	Seminar-1	0-0-3	1		
5	PS	BTSC-P-SC-301	Evaluation of Summer Internship-1	0-0-3	2		
		12	6				
		Grand Total	Hours/ Credit(Practical)	39	25		

	Fourth Semester							
Theory								
Sl. No.	Catego ry	Course Code	Course Title	WCH L-T-P	Credit			
1	PE	BTEC-T-PE-401	Electromagnetic Theory	4-1-0	3			
2	PC	BTEC-T-PC-401	Analog Electronics Circuit	4-1-0	3			
3	PC	BTCS-T-PC-402	Programming using Python	4-1-0	3			
4	HS	BTBS-T-HS-401/ BTBS-T-HS-402	Organizational Behavior, Engineering Economics	4-1-0	3			
5	PC	BTEE-T-PC-401	Network Theory	4-1-0	3			
6	00	BTEC-T-00-401	NPTEL	2-0-0	3			
7	AEC	BTSC-T-AET-401	Ability Enhancement Training-C	2-0-0	1			
8	MC	BTMC-T-MC-401	Environmental Engineering	1-0-0	0			
	•	Т	otal Hours/ Credit (Theory)	30	19			
			Practical					
1	РС	BTEC-P-PC-401	Analog Electronics Circui Laboratory	0-0-2	1			
2	PC	BTCS-P-PC-402	Programming using Python Laboratory	0-0-2	1			
3	PC	BTEE-P-PC-401	Network Theory Laboratory	0-0-2	1			
4	4 Project 3 PS BTPS-P-PS-401				2			
	Total Hours/ Credit(Practical) 9 5							
	Grand Total Hours/ Credit(Practical) 39 24							
	SUMMER INTERNSHIPTRAINING for 30Days							

Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA are:

- PO1. **Engineering Knowledge**: Apply the k n o w l e d g e of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. **Conduct Investigations of Complex Problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. **Life-long Learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

L Lecture T Tutorial

P Laboratory / Practical / Sessional

WCH Weekly Contact Hours

BS Basic Sciences

HS Humanities & Social Sciences (including Management)

ES Engineering Sciences
PC Professional Core
PE Professional Elective

OE Open Elective

MC Mandatory Course

SC Skill Course

EET Employability Enhancement Training

SEPD Skill Enhancement and Personality Development

Evaluation Scheme

Mark Distribution for Internal & External Examinations for all Courses- 2023-24

	Proposed Internal Examination (B. Tech, Autonomous)						
Sr No	or No Type of Test Mark Frequency Total Mark						
1 Modular Test 25 4 10					50		
2	Online Quiz Test	10	4	40	10		
3	Assignment	10	2	20	10		
4	Subject Specific Project	15	15				
5	5 Attendance 15 1 15						
	100						
	45						

Proposed External Examination (B. Tech, Autonomous)							
SI No	Total Mark						
1	1 End Semester Examination 100 1						
	Pass Mark						

Instructions:

- 1. Each student must appear in all of the above internal examinations without fail.
- 2. No exemption or accommodation of request will be entertained.
- 3. In case of exigency, or self-illness the student must submit ample evidence to re-appear the test. Since the schedule of the examination is non-negotiable, the request shall be sent to the competent authority.
- 4. Appearance of modular tests is part of the curriculum; hence each student is urged to appear for each modular test. Due penalty as per the examination rule shall be imposed.
- 5. For not qualifying or to improve the individual subject score in internal the student must appear on the improvement test after successful registration in CMS.

${\bf Evaluation\ Process\ of\ Practical\ Subjects:}$

Components	Marks	Frequency	Assigned To
Attendance	10	Closing of Instruction	To be retrieved from CMS
Daily Performance & Viva-voce	40	On the day of Experiment	Concerned Faculty (Upload in CMS in weekly basis)
Lab Record	20	On the day of Experiment	Concerned Faculty
End-Semester Lab Test	30	1	At the end of the semester as per the schedule published by Examination Cell
Total	100		

Evaluation Process of Mandatory Courses:

Components	Marks	Frequency	Assigned To
In-Semester Evaluation	100	1	Examination Cell/ Concerned Faculty
Total	100		

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-301	Mathematics - III	4-0-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of ordinary differential equations and applications, solution of system of linear equations using matrix, Eigen vectors & Eigen values of matrices with applications.
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
	Laplace transformation, Inverse Laplace transformation, Unit step function, Dirac's	
Module-1	delta function,	6 Hours
	Convolution, applications in solving differential equations, and Integral Equations	
Module-2	Fourier series, Fourier expansion of functions of any period,	8 Hours
	Even and odd functions, Half range Expansion, Fourier transform and Fourier	
Module-3	Integral, Power series solutions to ordinary differential equations,	7 Hours
	Solution of Legendre differential Equation, Generating functions, Rodrigue's	
Module-4	formula, Bessel's function and its properties.	7 Hours
	Complex analysis: Complex plane, polar form, power and roots, analytic	
Module-5	function, Cauchy Reimann equations, harmonic function, Laplace functions.	6 Hours
	Probability: Random variables, Probability distributions, Mean and variance of a	
Module-6	distribution, Binomial, Poisson and Normal distributions.	6 Hours
	Total	40 Hours

Tex	Text Books:		
1	E. Kreyszig, Advanced Engineering Mathematics, Wiley India.		
2	B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.		
Re	Reference Books:		
1	1 S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.		
2	P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.		
3	B. S. Grewal, Higher Engineering Mathematics, Khanna Publication		

Online Resources:

- 1. https://nptel.ac.in/courses/111104075/
- 2. https://nptel.ac.in/courses/111104078/
- 3. https://nptel.ac.in/courses/111104092/
- 4. https://nptel.ac.in/courses/122104017/
- 5. https://nptel.ac.in/courses/122104017
- 6. https://nptel.ac.in/courses/111102111/
- 7. https://nptel.ac.in/courses/111105035/287
- 8. https://nptel.ac.in/courses/111105035/28

CO1	Apply the knowledge of Laplace transform to solve the complex engineering problems.
CO2	Find the Fourier series and Fourier transforms of functions.
CO3	Illustrate the applications of Laplace & Fourier Transformations.
CO4	Understand the concepts of power series solution and some important special functions.
CO5	Understand the concepts of Analytic function.
CO6	Understand the basic concept on probability and various distributions.

Type	Code	Digital Electronics	L-T-P	Credits	Marks
PC	BTEC-T-PC-301	Digital Dicertonics	4-0-0	3	150

Objectives	To introduce the students to the world of digital electronics and its system applications.
Pre-Requisites	Basic Electronics
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned
Pedagogy	to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Number System: Introduction to various number systems and their Conversion. Arithmetic Operation using 1's and 2's Compliments, Signed Binary and Floating-Point Number Representation. Introduction to Binary codes and their applications. Boolean Algebra and Logic Gates: Boolean algebra and identities, Complete Logic set, logic gates and truth tables. Universal logic gates, realization using universal logic gates.	6 Hours
Module-2	Algebraic Reduction, Canonical Logic Forms, Extracting Canonical Forms, NAND and NOR Logic Implementations, K-Map, QM Method. Combinational Logic Design: Analysis, Design: Specifying the Problem, Concept of Digital Components	8 Hours
Module-3	Binary Adders, Subtraction and Multiplication, An Equality Detector and comparator, Line Decoder, encoders, Multiplexers and De-multiplexers, Tristate Buffer. Hazards and Hazard free circuits. Sequential Logic Design: Flip flop and Timing circuit: set-reset laches, D-flipflop, R-S flip-flop, J-K Flip-flop, Master slave Flip flop, edge triggered flipflop, T flip-flop	8 Hours
Module-4	Serial in/Serial out shift register, Serial in/Serial out shift register, Serial in/parallel out shift register, parallel in/ parallel out shift register, parallel in/Serial out shift register, Bi-directional register.	6 Hours
Module-5	Analysis, Design: Registers & Counters: Synchronous/Asynchronous counter operation, Up/down synchronous counter, application of counter, Johnson counter, ring counter, sequence generator	6 Hours
Module-6	Basic hardware description language: Introduction to Memory: RAM and ROMs, Programmable Logic Array, Programmable Array Logic.	6 Hours
	TOTAL	40 Hours

Te	Text Books:		
1	Digital Design, 3rd Edition, Moris M. Mano, Pearson Education.		
2	A First Course in Digital System Design: An Integrated Approach, India Edition, John P. Uyemura, PWS Publishing Company, a division of Thomson Learning Inc.		
Re	Reference Books:		
1	Fundamentals of digital circuits, 8th edition, A. Anand Kumar, PHI		
2	Digital Fundamentals, 5th Edition, T.L. Floyd and R.P. Jain, Pearson Education, New Delhi.		
3	Digital Electronics, G. K. Kharate, Oxford University Press.		
4	Digital Systems - Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and		
4	Gregory L. Moss, Pearson Education.		

CO1	Understand the basic components and laws of digital circuits.
CO2	Learn the representation and simplification of digital circuits
CO3	Analyse and design various Combinational circuits.
CO4	Analyse and design various Sequentialal circuits.
CO5	Apply the HDL for digital circuits.
CO6	Validate combinational logic circuits using programmable logic devices.

Experiential Learning:

- 1-Design of logic gates using discrete components.
- 2-Design of different combinational circuits using gates.
- 3-Simulation of different combinational circuits using EDA tools.
- 2-Design of different sequential circuits using gates.
- 3-Simulation of different sequential circuits using EDA tools.

Type	Code	Semiconductor and Optoelectronic Devices	L-T-P	Credits	Marks
ES	BTEC-T-PE-301		4-0-0	3	150

Objectives	To impart knowledge about the principles of semiconductor devices.
Pre-Requisites	Basic Electronics
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to be
Pedagogy	interactive with focus on problem solving activities.

Module	Topics	
Module-1	Electrons and Holes in semiconductors: Silicon crystal structure; Donors and acceptors in the band model; electron effective mass; Density of states; Thermal equilibrium; and Fermi-Dirac distribution function for electrons and holes; Fermi energy. Equilibrium distribution of electrons & holes: derivation of n and p from D(E) and f(E), Fermi level and carrier concentrations; The np product and the intrinsic carrier concentration. General theory of n and p; Carrier concentrations at extremely high and low temperatures: complete ionization, partial ionization and freeze-out; Energy-band diagram and Fermilevel, Variation of EF with doping concentration and temperature.	8 Hours
Module-2	Motion and Recombination of Electrons and Holes: Carrier drift: Electron and hole mobilities; Mechanism of carrier scattering; Drift current and conductivity. Carrier diffusion: diffusion current, Total current density; relation between the energy diagram and potential, electric field; Einstein relationship between diffusion coefficient and mobility; Electron-hole recombination; Thermal generation. PN Junction: Building blocks of the pn junction theory: Energy band diagram and depletion layer of a pn junction, Built-in potential; Depletion layer model: Field and potential in the depletion layer, depletion-layer width; Reverse-biased	7 Hours
Module-3	PN junction: Capacitance-voltage characteristics; Junction breakdown: peak electric field. Tunneling breakdown and avalanche breakdown; Carrier injection under forward bias-Quasi-equilibrium boundary condition; current continuity equation; Excess carriers in forward-biased pn junction; PN diode I-V characteristic, Charge storage.	6 Hours
Module-4	The Bipolar Transistor: Introduction, Modes of operation; Minority Carrier distribution, Collector current, Base current, current gain, Base width Modulation by collector current, Breakdown mechanism, Equivalent Circuit Models – Ebers -Moll Model.	6 Hours
Module-5	Fundamental of fiber optics, Different generations of optical fiber communication systems. Optical fiber structure, Fiber types, step index fiber and graded index fiber, ray propagation, total internal reflection, Numerical Aperature, acceptance angle.	6 Hours

Module-6	Wave propagation in a cylindrical wave guides, modal concept, V-number, power flow in step index fiber and graded index fiber, attenuation (absorbtion, scattering and bending) and dispersion (inter and intramodal, chromatic, wave guide and polarization) in fiber, dispersion shifted and dispersion flattened fiber.	7 Hours
	TOTAL	40 Hours

Te	xt Books:				
1	Modern Semiconductor Devices for Integrated Circuits-Chenming Calvin Hu, Pearson				
1	Education/Prentice Hall, 2009.				
	Semiconductor Physics and Devices-Donald A. Neamen, Tata McGraw Hill Publishing				
2	Company Limited, New Delhi, 3rd Edition.				
3	Optical Fiber Communications, Keiser G, Tata McGraw Hill Education Private Limited, 4th Edition.				
Re	ference Books:				
1	Solid State Electronics Devices-Ben. G. Streetman and Sanjay Banarjee, Pearson Education, New Delhi,				
1	6th Edition.				
2	Optical Fiber Communication Principles and practice, Senior J, Prentice Hall of India.				
3	Physics of Semiconductor Devices-S.M. Sze and Kwok K. Ng, Wiley India Pvt. Limited, New Delhi, 3rd				
3	Edition				
4	Physics of Semiconductor Devices-Dillip K. Roy, University Press (India) Pvt. Ltd., Hyderabad, 2nd				
4	Edition				
5	Semiconductor Physics and Devices- Fowler, Oxford University Press.				
6	6. Solid State Electronics Devices-D.K. Bhattacharya and Rajnish Sharma, Oxford University Press, New				
O	Delhi, 2nd Edition				
7	Fundamentals of Semiconductor Devices-M.K. Achuthan and K.N. Bhatt, Tata McGraw				
/	Hill Publishing Company Limited, New Delhi.				

CO1	Describe the mechanism of electrons and holes in semiconductor electronics.
CO2	Analyze Energy band diagrams and Fermi levels.
CO3	Understand formation of pn junction.
CO4	Explain Capacitance and voltage relationship in diode.
CO5	Describe different modes of operation of BJT
CO6	Understand the basics concepts of fiber optics and optoelectronic devices.

Experiential Learning:

- 1-Diode as a switch
- 2-BJT as a switch
- 3-BJT as an amplifier
- 4-Attenuation in optical fiber

Page 14 of 60

Type	Code	Signals and Systems	L-T-P	Credits	Marks
PC	BTEC-T-PC-302		4-0-0	3	150

Objectives	To provide a thorough understanding and analysis of signals and systems
Pre-Requisites	Basic Electronics, Mathematics
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to be
Pedagogy	interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Signals: Introduction, Classification, Signals and vectors analogy, Concept of Vector space and Orthogonally, Sampling and reconstruction of band limited signals, Representation of analog and discrete time signals in terms of impulses, Representation of discrete time signals and Basic operation on signals. Sequences: Classification based on length, symmetric, periodicity, energy power, special sequences, and arithmetic operations on sequences.	8 Hours
Module-2	Systems: Introduction, Classification, LTI systems, Linear Convolution, Causality and stability of LTI systems, Representation of causal LTI systems, Order of systems, IIR and FIR systems,	7 Hours
Module-3	Correlation Fourier Analysis: Significance of Fourier series in LTI systems, Continuous time Fourier series formula and derivation, Dirichlet conditions & properties, Approximation of Fourier series to Fourier transform for aperiodic signals, Properties, examples ,amplitude and power spectra, Analysis of LTI systems using Fourier Transform	7 Hours
Module-4	Laplace Transform: Introduction, Properties with examples, Relationship between Fourier and Laplace transform, Pole-Zero plots, Analysis of LTI systems, Transfer function.	6 Hours
Module-5	Z-transform: Introduction, Definition, ROC of the Z – Transform, System Transfer Function, Poles and zeros, Properties of Z – Transform,	6 Hours
Module-6	Inverse Z – Transform , Solution of difference equations using one sided Z – Transform, Response of pole-zero systems with Non-Zero initial conditions, Causality and stability of LTI systems in the Z-domain.	6Hours
	TOTAL	40 Hours

Te	Text Books:		
1	Signals and Systems by Alan V. Oppenheim, Alan S. Wilsky and Nawab, Prentice Hall		
2	Signals and Systems by K. Gopalan, Cengage Learning (India Edition)		
3	Signals & Systems – P. Ramesh Babu –Scitec,4th Edition.		
Re	Reference Books:		
1	Linear Systems and Signals by B.P.Lathi, Oxford University Press		
2	Signal, Systems and Transforms by Charles L. Philips, J. M. Parr and E. A. Riskin, Pearson Education		
3	Signal and Systems by Anand Kumar, 3rd Edition, PHI		

CO1	Differentiate between various types of signals and operate on signals.
CO2	Classify various types of systems and differentiate between convolution, de-convolution and correlation of arbitrary signals.
CO3	Analyze LTI systems and signals using Laplace transforms and Fourier transforms.
CO4	Differentiate between Laplace transforms and Fourier transforms.
CO5	Define and classify analog filters and find the frequency plots of various filters.
CO6	Differentiate between Z-transforms and Fourier transforms.

Experiential Learning:

- 1. To explore the commutation of even and odd symmetries in a signal with algebraic operations.
- 2. To explore the effect of transformation of signal parameters (amplitude-scaling, time-scaling, and time-shifting).
- 3. To explore the various properties of the impulse signals.
- 4. To visualize the complex exponential signal and real sinusoids.
- 5.Locating the Zeros and Poles and plotting the Pole-Zero maps in S plane and Z- Plane for the given transfer function.
- 6. Transformation of signals into time and frequency domains.
- 7. Design, analysis and application of Low pass and High pass filters.
- 8. Sampling Theorem Verification.
- 9.Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power
- 10. Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI system and verifying its physical realiazability and stability properties.
- 11. Design, analysis and application of Band Pass and Band stop filters

Type	Code	Organizational Behavior	L-T-P	Credits	Marks
HS	BTBS-T-HS-301		3-0-0	3	15

Objectives	To understand the concepts and theories useful for diagnosing human behavior in modern-day organizations. To examine different aspects of organizational structure such as formation of organizational systems, structure, and processes. To develop an understanding of these theories and of related ideas and concepts and critically evaluate them. To develop skills to deeply analyze human behavior and apply the learning's to organizational context. Understanding the group dynamics and Leadership in the Organization.
Pre-Requisites	To stimulate specific goals and achieve optimal performance from workers, it is useful to explore ways of stimulating fruitful behaviors from workers by studying organizational behavior.
Teaching Pedagogy	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with focus on real-world problem solving through case lets.

Module	Topics	Hours	
	Introduction- Nature, Scope, Purpose, Function, Elements of OB. Evolution of OB	10 hours	
Module -1	- Classical, Scientific, Administrative, Human Relation Movement, Bureaucracy,		
	System Theory. Contribution to the field of Management by different Disciplines,		
	Model of OB, Application of OB. Case Let.		
	Perception & Learning- Understanding of perception and its basic elements,	10 hours	
	perceptual selection, social perception, self -perception and identity, perceptual		
Module -2	biases. Learning in organization and classical and operant conditioning.		
	Personality- Meaning of Personality, Personality Development, Determinants of		
	personality, Personality Theories, Self-esteem & Defrawareness, Application		
	of personality in the organizational level. Case Let.		
	Motivation- Concept of motivation, motivation and behavior, Misbehavior, Types	6 hours	
	of motives, Management Intervention. Theories of		
Module -3	motivation, Need theory, Hygiene theory, Theory X and Theory Y, ERG Theory,		
	Vroom's Expectancy Theory, Equity Theory, Elements of sound motivational		
	system, Money as a motivator, Motivation in Indian organization. Case Let.	4.7	
	Attitude- Definition, key elements and related concepts (value, opinion, belief and	4 hours	
	ideology), characteristics of attitudes, attitude formation and measurement,		
	changing attitude, attitude at workplace (job satisfaction, work attitude and		
Module -4	organizational commitment). Emotions at workplace; Definition, types, related		
	concepts (mood, temperament), Managing emotions at workplace, emotional		
	intelligence, meaning of stress, Work Stressors, Stress at work place, General Adaption syndrome, emotional labor, Balancing work and		
	Life. Case Let.		
	Leadership- Meaning, Leader Vs. Manager, leadership theories, Leadership styles,	6 hours	
	Leadership in Indian Organization. Group Dynamics- Define Groups & Camp;	o mours	
Module -5	teams, Types of Group, Group Behavior, Group Formation, Group Decisions, and		
Widule -3	Techniques to improve group decision, merits and de-merits of group decision.		
	Organizational Change- Meaning and Nature of organizational change, Factors of	4 hours	
	organizational change, Resistance to change, Managing resistance to change,	7 HOULS	
Module -6	Overcoming resistance to change, Organizational culture- Impact of culture on		
MIDUUIC -0	individuals, Cultural dimensions, Types of culture.		
	Total	40 hours	
	Total	.o nours	

Text B	Book
1.	A Textbook of Organizational Behavior, by S.S. Khanka, S Chand.
2.	Organizational Behaviour, by M. N. Mishra, Vikas Publishing House.
3.	Organizational behavior by N. Kumar & R. Mittal, Anmol Publication.
4.	A Textbook of Organizational Behavior by C. B. Gupta, S Chand.
5.	Organizational Behaviour, by Robbins/Vohra, Pearson.
Refere	ence Books
1 (Organizational Behavior, K. Aswathappa, Sadhana Dash, Himalaya Publishing House.
2	Organizational Behavior. Arun Kumar and N. Meenaskshi .Vikas Publishing House, 2009
3	Managing Organizational Behavior, Moorhead & Griffin. CENGAGE Learning, 2014.
4	Human Behavior at Work. Keith Davies, 2002.
5	Understanding Organizational Behaviour . Pareek, U. Oxford University Press, (2012).

CO1	To discuss the development of the field of organizational behavior and explain the micro and
CO2	To analyses and compare different models used to explain individual behavior related to motivation and rewards
CO3	To explain group dynamics and demonstrate skills required for working in groups.
CO4	To identify the various leadership styles and the role of leader in a decision making process.
CO5	To explain organizational culture and de4scribe its dimensions and to examine various Organizational designs.
CO6	To discuss the implementation of organizational change.

Type	Code	Object Oriented Programming	L-T-P	Credits	Marks
PC	BTCS-T-PC-305	using JAVA	3-0-0	3	150

Objectives	To expose in the field of Programing Language (Core java)
Pre-Requisites	Knowledge of programming in 'C'
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with focus on real-life problem-solving activities.

	- I	Hours
Module-1	Object oriented paradigm: Evolution of programming paradigm, structured versus object-oriented development, Introduction to Object oriented programming concepts: Objects, classes, encapsulation and abstraction, inheritance, polymorphism, dynamic binding, message passing. Executing the program, Architecture of JVM. Understanding First Program and a step forward, Java Tokens, Data types, Operators, Typecasting, Control Structures and Arrays, Conditional Statements, Jumping Statements.	8 Hours
Madula 2	Java I/O: Taking Input from keyboard, Command Line Arguments, Using Scanner Class, Using Buffered Reader class. Object and Classes: class and object, functions and data members, static members. Constructors - default constructor, parameterized constructor.	6 Hours
Module-2	Inheritance: Derived and base classes, public, private, and protected	
Module-3	derivations, constructors in derived classes, Constructor call in Inheritance, super keyword, this keyword. Data Abstraction: Basics of Data Abstraction, Understanding Abstract classes,	6 Hours
	Understanding Interfaces, Multiple Inheritance Using Interfaces.	
Module-4	Polymorphism: Types of polymorphism, Significance of Polymorphism in Java, Method Overloading, Constructor Overloading, Method Overriding, Dynamic Method Dispatching. String Manipulations: Introduction to different classes, String class, String Buffer, String	6 Hours
	Builder, String Tokenizer. Wrapper Classes: Introduction to wrapper classes, Different predefined wrapper	
	classes. Conversion of types from one type (Object) to another type (Primitive) and Vice versa, Concept of Auto boxing and unboxing.	
Module-5	Packages: Introduction to Packages, Java API Packages, User-Defined Packages, Accessing Packages. Multithreading: Thread in Java, Thread naming and Priorities, Thread execution	
2. Iouuic U	prevention methods. (yield (), join (), sleep ()), Concept of Synchronization, Inter Thread Communication, Basics of Deadlock, Demon Thread.	6 Hours
	Exception handling: Error and Exception Handling, Types of exceptions, Hierarchy of Exception classes, Default exception handling in Java, User defined/Customized Exception Handling (try, catch, finally, throw, throws). Abstract Window Toolkit (AWT): Description of Components and Containers, Component/Container hierarchy, Understanding different components/Container classes and their constructors, swing.	8 Hours
ge 19 of 60	Total	40 Hour

Text	Text Book		
1.	1. JAVA Complete Reference (9th Edition) Herbal Scheldt		
2.	CORE JAVA For Beginners. (Rashmi Kanta Das), Vikas Publication		
Refe	Reference Books		
	Programming in Java. Second Edition. OXFORD HIGHER EDUCATION. (SACHIN MALHOTRA / SAURAV		
1	CHOUDHARY)		
2	Effective Java 3rd Edition by Joshua Bloch (Author)		
3	Java For Dummies 6th Edition by Barry A. Burd (Author)		

CO1	Understand the Object-oriented programming concepts and every term of the program.
CO2	Test and execute the programmes by Object and Class and implement inheritance property.
CO3	Implement polymorphism and string manipulation.
CO4	Determine data abstraction and wrapper classes to achieve code reusability.
CO5	Analyse the multithreading and package implementation.
CO6	Understand the hierarchy of file stream classes and the concept of exception handling.

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-301	ESSENCE OF INDIAN KNOWLEDGE	2-0-0	0	150
		TRADITION			

Objectives	The course aims at imparting basic principles of thought process, reasoning and inferencing. Sustainability is at the core of Indian Traditional Knowledge Systems connecting society and nature. Holistic life style of Yogic-science and wisdom capsules in Sanskrit literature are also important in modern society with rapid technological advancements and societal disruptions. The course focuses on introduction to Indian Knowledge System, Indian perspective of modern scientific world-view and basic principles of Yoga and holistic health care system.
Pre-Requisites	
Teaching Pedagogy	

Module	Topics	Hours
Module -1	• Basic Structure of Indian Knowledge System (i) वेद, (ii) उपवेद (आयुवेद, धनुवेद, गन्धवेद,	10 Hours
	स्थापत्य आदि) (iii) वेदांग (शिक्षा, कल्प, निरुत, व्याकरण, ज्योतिष छंद), (iv) उपाइग (धर्म	
	शास्त्र, मीमांसा, प्राण, तर्कशास्त्र)	
Module -2	Modern Science and Indian Knowledge System	10 Hours
Module -3	Yoga and Holistic Health care	10 Hours
Module -4	Case Studies.	10 Hours
	Total	40 Hours

Text Book:

- 1. V. Sivaramakrishna (Ed.), Cultural Heritage of India-Course Material, Bharatiya Vidya Bhavan, Mumbai, 5th Edition, 2014
- 2. Swami Jitatmanand, Modern Physics and Vedant, Bharatiya Vidya Bhavan
- 3. Fritzof Capra, Tao of Physics
- 4. Fritzof Capra, The wave of Life

Course Outcomes: At the end of this course, the students will be able to:

Ability to understand, connect up and explain basics of Indian Traditional knowledge modern scientific perspective.

Type	Code	Ability Enhancement Training-B	L-T-P	Credits	Marks
SC	BTSC-T-AET-301		2-0-0	1	150

Objectives	To significantly raise the employability of the students to a level where they are able to clear campus selection process and at the same time develop an attitude of constant self-improvement throughout their career
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to be
Pedagogy	interactive with focus on real life problem solving activities.

Module-#	Topics	Hours
	Introduction to pre- placement talk, Speed maths (speed & accuracy in Addition	3 Hours
Module-1	Subtraction, Multiplication, Fractions, Percentage, Squares, Cubes, Square Roots,	
	Cube Roots, etc.).	
	Number system (number tree, factors & factorials, base change, finding last digit &	4 Hours
Module-2	last two digits of indices, LCM & HCF,) , Venn Diagrams (visually organize	4 Hours
	information, compare two or more choices, solve complex mathematical problems	
	compare data sets, to reason through the logic).	
	Syllogism (Introduction to syllogisms, Statements of syllogisms, Application of	2 11
Module-3	Venn diagrams, Logical deduction), Blood Relationship (Dialogue/ Conversation	3 Hours
	Based, Based on puzzles, coding-decoding).	
	Age based problems (Ratio and Sum of Ages Given, Ratio ∏ of Ages	
Module-4	Given under Problems on Ages, Ratio of Present and Future Ages Given, Ratio of	4 Hours
1/10001	Past &Present Ages Given). Ratio Proportion (direct proportion, inverse proportion,	
	continued proportion).	
Module-5	Percentage (basic concepts, comparison of percentage, successive percentage),	
	Alligation mixture, Introduction to Data interpretation (analytical methods to	
	review data), Introduction to Data sufficiency(checking and testing a given set of	
Module-6	Percentage(Basic, Comparison of two, Successive ,Product constancy ratio), Profit	3 Hours
	&Loss(Profit, Loss, Cost Price, Selling Price, Marked Price), Simple Interest &	
	compound interest, Puzzles(Floor, Scheduling, Double line up, Linear, Square,	
	Box)	
		20 House
	Total	20 Hours

Te	Text Books:	
1	Quantitative aptitude by R S Aggarwal	
2	Quantitative Aptitude for CAT by Arun Sharma	
Re	Reference Books:	
1	1 Fast Track Objective Arithmetic by Arihant Publications	

CO1	To help students explore their values and career choices through individual skill assessments
CO2	To make realistic employment choices and to identify the steps necessary to achieve a goal
CO3	To develop and practice self-management skills for the work site
CO4	To explore and practice basic communication skills
CO5	To learn skills for discussing and resolving problems on the work site
CO6	To assess and improve personal grooming

Type	Code	Digital Electronics Laboratory	L-T-P	Credits	Marks
P	BTEC-P-PC-301	Digital Electronics Laboratory	0-0-2	1	100

Objectives	The objective is to analyze the designing process of combinational and sequential circuits,
	express arithmetic logic and shift micro operations, identify the addressing modes used in
	macro instructions, apply algorithms for arithmetic operations and implementation for ALU
	design.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to
Pedagogy	be interactive with different examples

Expt. No.	Topic
1	Investigate logic behavior of NOT, AND, OR, NAND, NOR, EX-OR, EXNOR gates.
2	Gate-level minimization: Two level and multi-level implementation of Boolean functions.
3	Implementation of Boolean functions using universal gates.
4	Combinational Circuits: design, assemble and test: adders and subtractors, code converters
5	Design of multiplexers and de-multiplexer
6	Flip-Flop: assemble, test and investigate operation of SR, D & J-K flip-flops.
7	Shift Registers: Design and investigate the operation of all types of shift registers .
8	Study and design of Asynchronous Counters.
9	Study and design of synchronous Counters.
10	VHDL simulation and implementation of adder.

Text I	Text Books:	
1	Digital Electronics Circuit Lab Manual, Department of ECE, GIFT, Bhubaneswar	

Course outcomes

Type	Code	Signals and Systems Laboratory	L-T-P	Credits	Marks
P	BTEC-P-PC-302		0-0-2	1	100

Objectives	To analyse in depth the signals and systems in time, frequency and z-domains
Pre-Requisites	Signals and Systems theory
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to
Pedagogy	be interactive with different examples

Expt No	Topic
1	Introduction to MATLAB & Signals in MATLAB
2	Understanding the Basic Signals using MATLAB
3	Properties of Signals & their Transformation
4	Introduction to system & their classification
5	Characterization of systems
6	Convolution of continuous time & discrete time signals
7	MATLAB implementation of fourier series
8	MATLAB implementation of continuous time fourier transform
9	MATLAB implementation of discrete time fourier transform
10	MATLAB implementation of Z- transform

Text Books:	
1	Signals and Systems Lab Manual, Department of ECE, GIFT, Bhubaneswar

CO1	Verify the truth table of basic gates, universal gates and exclusive gates
CO2	Realise The Various Boolean Expression Using Universal Gates.
CO3	Design and test various combinational Circuits using Gates
CO4	Justify various Registers using flip-flop.
CO5	Demonstrate various sequential circuits like counters.
CO6	Analyse VHDL code for various combinational and sequential circuit.

Type	Code		Object Oriented Programming with	L-T-P	Credits	Marks	
PC	BTCS-P-PC-305		JAVA Laboratory	0-0-3	1	1	
Obje	Objectives		To expose to the field of Problem Solving and Programing				
Pre-Requisites Ki		Knowl	owledge of Mathematics in Secondary Education				
		_	or Lab with use of ICT. Each session is planne if e problem-solving activities.	d to be inte	ractive with	focus on	

Lab No:	Name of the experiments	Hours
1	Introduction, compiling and executing java program	2 Hours
2	Programs related to different data types, variables, constants, operators	2 Hours
3	Conditional statements, control structures (while, do-while, for) Jumping statements	2 Hours
4	Array and multidimensional array	2 Hours
5	Object, class and Constructors	2 Hours
6	Inheritance, Interfaces and multiple inheritance	2 Hours
7	Polymorphism (method overloading and method overriding)	2 Hours
8	String Manipulations, Wrapper Class	2 Hours
9	Java threads (yield (), join (), sleep ()), Concept of Synchronization, Inter Thread Communication)	2 Hours
10	Exception handling	2 Hours
11	APPLET, Package	2 Hours
12	AWT and SWING	2 Hours
13	File handling, Event Handling	2 Hours

Text Books:

Object Oriented Programming with JAVA Lab Manual, Department of CSE, GIFT, Bhubaneswar

CO1	Using object-oriented features, such as abstraction, inheritance, polymorphism etc. for writing effective programs.
CO2	Understand and compile code under java programming environment. (Using different data types, control structure and arrays)
CO3	Apply polymorphism and string concept to solve a problem in real world.
CO4	Develop own package and apply thread synchronization using multi-threading concept.
CO5	Recommend different error handling methods to handle the exception and make the java program more efficient.
CO6	Create API to design web based as well as stand-alone applications. (Using AWT and Swing)

Type	Code	SEMINAR-I	L-T-P	Credits	Marks
PS	BTPS-P-PS-301		0-0-3	1	100

Objectives	To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
Pre-Requisites Teaching	Knowledge of Speaking with globally accepted language and subject analysis. Regular seminar presentation and evaluation with record keeping.
Pedagogy	

METHOD OF EVALUATION:

- 1. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a duration of about 8 to 10 minutes.
- 2. In a session of one period per week, 5 students are expected to present the seminar.
- 3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.
- 4. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report.
- 5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 6. Evaluation is 100% internal.

CO1	Outline the topics on modern technology; prepare implementation of the same as the presentation.
CO2	Understanding the technologies used by extracting the new things to be implemented by reviewing the journals/research papers.
CO3	Sketch the application of the technology for the use of the mankind.
CO4	Analyse and correlate the new technology with the subject of interest for further study.
CO5	Evaluate, plan and reframe the technology with the communication skills for a better explanation and presentation.
CO6	Modify and design the concept into the realistic world.

Type	Code	Evaluation of Summer Internship-1	L-T-P	Credits	Marks
SC	BTSC-P-SC-301		0-0-3	1	100

Objectives	To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.	
Pre-Requisites	Knowledge of Speaking with globally accepted language, subject analysis, practical implementation.	
Teaching Pedagogy	Regular contact with interns and evaluation with record keeping.	

METHOD OF EVALUATION:

- 1. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for duration of about 8 to 10 minutes.
- 2. In a session of one period per week, 5 students are expected to present the seminar.
- 3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.
- 4. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report.
- 5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 6. Evaluation is 100% internal.

CO1	State the functioning of organization and observe changes for self-improvement.
CO2	Explain how the internship placement site fits into a broader career field.
CO3	Apply appropriate workplace behaviours in a professional setting.
	Solve real life challenges in the workplace by analysing work environment and conditions, and selecting appropriate skill sets acquired from the course
CO5	Evaluate the internship experience in terms of personal, educational and career needs.
CO6	Develop ideas for suitable startups to become successful entrepreneur.

Objectives	The objective of this course is to study the fundamentals of electromagnetic waves including coordinate systems, vector calculus, electrostatic fields, magneto-static fields, Maxwell's Equations, electromagnetic wave propagation, transmission lines, wave guides, and antennas.
Pre-Requisites	Basic knowledge of coordinate systems, vector calculus, electric & magnetic fields and related laws is required.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Electro Magnetic Theory

L-T-P

4-2-0

Credits

Marks

100

Detailed Syllabus

Code

BTEC-T-PC-402

Type

PC

Module	Topics	Hours
Module-1	Coordinate System & Vector Calculus: Co-ordinate systems & Transformation: Cartesian co-ordinates, circular cylindrical coordinates, spherical coordinates. Vector Calculus: Differential length, Area & Volume, Line, surface and volume Integrals, Del operator, Gradient of a scalar, Divergence of a vector & Divergence theorem, Curl of a vector & Stoke's theorem, Laplacian of a scalar.	8 Hours
Module-2	Static Electric Fields: Electrostatic Fields: Coulomb's Law, Electric Field Intensity, Electric Fields due to a point, line, surface and volume charge, Electric Flux Density, Gauss's Law- Maxwell's Equation, Electric Potential, Relationship between E and V	6 Hours
Module-3	Maxwell's Equation, Energy Density in Electrostatic Fields., Current and current density, Ohms Law in Point form, Continuity of current, Boundary conditions. Electrostatic boundary-value problems: Poisson's and Laplace's Equations, Uniqueness Theorem, General procedures for solving Poisson's and Laplace's equations.	7 Hours
Module-4	Static Magnetic Field: Magnetic Field Intensity, Biot-Savart's Law, Ampere's circuit Law-Maxwell Equation, applications of Ampere's law, Magnetic Flux DensityMaxwell's equations.	6 Hours
Module-5	Maxwell's equation for static fields, Magnetic Scalar and Vector potentials. Magnetic Boundary Conditions. Electromagnetic Field and Wave propagation: Faraday's Law, Transformer & Motional Electromagnetic Forces, Displacement Current, Maxwell's Equation in Final forms	7 Hours
Module-6	Time-Harmonic Field. Electromagnetic Wave Propagation: Wave Propagation in lossy Dielectrics, Plane Waves in loss less Dielectrics, Free space, good conductors Power & Poynting vector.	6 Hours
	TOTAL	40 Hours

Text Books:

- M. N. O. Sadiku and S. V. Kulkarni, Principles of Electromagnetics, 6th Edition, Oxford University Press, 2015.
- E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd Edition, Pearson Education, 2009. T3. C. A. Balanis, Antenna Theory: Analysis and Design, 4th Edition, John Wiley & Sons, 2016.

Reference Books:

- W. H. Hayt and J. Buck, Engineering Electromagnetic, 7th Edition, McGraw Hill Education, 2006.
- N. N. Rao, Fundamentals of Electromagnetics for Engineering, 1st Edition, Pearson Education, 2009.
- 3 S. Ramo, Fields and Waves in Communication Electronics, 3rd Edition, John Wiley & Sons, 2007.
- A. R. Hasish and M. Sachidananda, Antennas and Wave Propagation, 1st Edition, Oxford University Press, 2007

Online Resources

- 1 https://nptel.ac.in/courses/108104087/: by Prof. P. Kumar, IIT Kharagpur
- https://nptel.ac.in/courses/108/106/108106152/: by Prof. U. Khankhoje, IIT Madras
- 3 https://nptel.ac.in/courses/108/104/108104130/: by Prof. P. Kumar, IIT Kanpur
- 4 https://nptel.ac.in/courses/108/102/108102119/: by Prof. S. Aditya, IIT Delhi
- 5 https://nptel.ac.in/courses/108/101/108101090/: by Prof. K. Sankaran, IIT Bombay
- https://nptel.ac.in/courses/108/101/108101092/: by Prof. G. Kumar, IIT Bombay

Course Outcome: At the end of the course the student will be able to

CO1	To understand the basic laws of electromagnetism.
CO2	To understand the basic laws of electromagnetism
CO3	To understand the basic laws of electromagnetism
CO4	To understand the basic laws of electromagnetism
CO5	To understand the propagation of EM waves.

EXPERIENTIAL LEARNING: -

- 1. Find the angle between two vectors using dot product and cross product in MATLAB.
- 2. For given two vectors A & B find the vector component of A parallel to B using MATLAB.

Type Code		Analog Electronic Circuits	L-T-P	Credits	Marks
PC	BTEC-T-PC-401		4-1-0	3	150

Objectives To expose the students semiconductor device, performance characteristics and their app	
Pre-Requisites Basic Electronics and Basic concept Physics and mathematics	
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned
Pedagogy	to be interactive with focus on real-life problem-solving activities.

Module	Topics	
Module-1 Biasing of BJTs: Load L ines (AC and DC), Operating Points, Fixed Bias, See Bias, Voltage divider bias, feedback bias, etc. Bias Stabilization		6 Hours
Module-2	Field-Effect Transistor: Principle and Operation of FETs and MOSFETs; P-Channel and N-Channel MOSFET; Complimentary MOS V-1 Characteristics of E-MOSFET and DMOSFET MOSFET as an Amplifier and as a Switch.	6 Hours
Module-3	Small Signal Analysis of BJTs: Small-Signal Equivalent-Circuit Models, Small Signal Analysis of CE, CC, CB amplifiers Emitter Follower, Effects of RS and RL on CE amplifier, Compound configuration- Cascade, cascode amplifier, Darlington Connection and Current Mirror Circuits	8 Hours
Module-4	Small Signal Analysis of FETs: Small-Signal Equivalent-Circuit Model, Small Signal Analysis of CS, CD, CG Amplifier, Effects of RsiG and RL on CS Amplifier, Source Follower and Cascaded System.	6 Hours
Module-5	High Frequency Response of BJTs ,High Frequency Response of FETs, Frequency Response of CE Amplifier., Frequency Response of CS Amplifier.Operational Amplifiers and its applications. Feedback amplifier and Oscillators: Concepts of negative and positive feedback Four Basic Feedback Topologies	8 Hours
Module-6	Practical Feedback Circuits Principle of Sinusoidal Oscillator, Wey-bridge, Phase Shift and Crystal Oscillator Circuits, Power Amplifier (Class A, B, AB, C).	6 Hours
	TOTAL	40 Hours

Te	Text Books:				
1	Electronic Devices and Circuit Theory, R. L. Boyelstad and L. Nashelsky, Pearson Education, New Delhi , 9th				
1	/10th edition 2013.(Selected portions of chapter 4,5,6,7,8,9,10,11,12 and 14)				
2	Milliman's Electronic Devices and Circuits, J. Milliman, C. Halkias, S. Jit., Tata Mcgraw Hill Education Pvt. Ltd.				
4	2nd Edition 2008.				
Re	Reference Books:				
1	Electronic Devices and circuits, Jimmie, J. Cathey adapted by Ajay Kumar Singh Tata Mcgraw Hill publishing				
1	company ltd, New Delhi 3rd edition(For Problem Solving.				
2	Electronics Circuit Analysis and Design, Donland A. Naeman, Tata Mcgraw Hill publishing company ltd, New				
	Delhi, 3rd Edition, 2002.				
3	Integrated Electronics: Analog and Digital circuits and systems, J. Milliman, C. Halkias Tata Mcgraw Hill				
3	Education Pvt. Ltd, New Delhi, 2nd Edition 2004.				
4	Microelectronic circuits: Analysis and Design, M. H. Rashid, PWS publishing company, a division of Thomson				
-	Learning Inc. India Edition.				

5 | Electronics devices and circuits, David A. Bell, Oxford Press, 5th Edition 2008.

CO1	Define and understand fundamentals of BJT,FET, MOSFET.	
CO2	Explain different types of amplifier and their design.	
CO3	Apply various types of BJT and FET amplifiers.	
CO4	Analyse the hardware components of amplifier circuits.	
CO5	Design different amplifier and oscillator circuits and its applications	
CO6	Review frequency response of BJT and JFET Amplifiers.	

EXPERIENTIAL LEARNING:-

- 1. Simulate and study Integrator using PSPICE windows.
- 2. Simulate and study Differentiator using PSPICE windows.
- 3. Simulate and study Darlington pair amplifier circuit using PSPICE windows.
- 4. Simulate and study frequency response of a BJT amplifier in common-emitter configuration using PSPICE windows.
- 5. To verify the characteristics of Wein Bridge Oscillator

Type	Code	PROGRAMMING USING PYTHON	L-T-P	Credits	Marks
PC	BTCS-T-PC-405		3-0-1	3	150

Objectives	Python is next generation multi-purpose programming language, that allows		
	different users to create applications of various domains. Students will be able		
	to learn primary fundamentals of python programming and potential of python		
	is to achieve modern computing requirements.		
Pre-Requisites	Object oriented concepts, Programming fundamentals		
Teaching	Regular classroom lectures with use of ICT as and when required,		
Pedagogy	sessions are planned to be interactive with different examples		

Module-#	Topics	Hours	
Module-1	Introduction: History of Python, Need of Python Programming, Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation. Types, Operators and Expressions: Types - Integers, Strings, Booleans; Operators- Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations		
Module-2	ControlFlow- if, if-else, for, while, break, continue, pass. Data structure: Lists - Operations, Slicing, Tuples, Sets, Dictionaries, Sequences. Comprehensions.	5 Hours	
Module-3	Functions - Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.		
Module-4	Object Oriented Programming OOP in Python: Classes and objects, constructor, 'self-variable', Methods, Constructor Method, Inheritance and types of inheritance, Polymorphism, overloading and Overriding Methods, Dataencapsulation, static variables		
Module-5	Python File Handling: Open files, read from a file and write to a file. Exception handling: Errors and exceptions in Python, Try Except, Built-in exceptions, user defined exceptions 6 Hour		
Module-6	Brief Tour of the Standard Library - Dates and Times, Matplotlib, Numpy Pandas. Modules: Creating modules, importing modules	8 Hours	
l	Total	40 Hours	

Text	Text Book				
1. Pv	1. Python Programming: A Modern Approach, Vamsi Kurama, Pearson				
	arning Python, Mark Lutz, Orielly.				
Refe	rence Books				
1	Core Python Programming, W.Chun, Pearson.				
2	Introduction to Python, Kenneth A. Lambert, Cengage				
3	John V Guttag, —Introduction to Computation and Programming Using Python ", Revised and expanded Edition, MIT Press, 2013				
4	Kenneth A. Lambert, —Fundamentals of Python: First Programs , CENGAGE Learning, 2012.				
5	Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-solving Focus, Wiley India Edition, 2013				

	CO1	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python contro
		flow statements.
	CO2	Express proficiency in the handling of strings and functions
	CO3	Determine the methods to create and manipulate Python programs by utilizing the data structures
	COS	like lists, dictionaries, tuples and sets.
	CO4	Develop micro code for typical instructions in symbolic form.
	CO5	Identify the commonly used operations involving file systems
ſ	CO6	Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and
	200	polymorphism as used in Python.

Type	Code	Engineering Economics	L-T-P	Credits	Marks
HS	BTBS-T-HS-302		3-0-0	3	15

Objectives	This course will expose students to economic theory through the use of mathematical	
	modeling with a focus on economic decision making for engineers	
Pre-Requisites	Mathematics	
Teaching Regular classroom lectures with use of ICT as and when required, sessions are planned		
Pedagogy	to be interactive with focus on real-life problem-solving activities.	

Module-#	Topics	Hours
Module-1	Engineering Economics- Nature, Scope, Basic problems of an economy, Micro Economics and Macro Economics. Demand - Meaning of demand, Demand function, Law of Demand and its exceptions, Determinants of demand, Elasticity of demand & its measurement (Simple numerical problems to be solved), Demand Forecasting – Meaning of supply, Law of supply and its exception, Determinants of supply, Elasticity of supply, Determination of market equilibrium (Simple numerical problems to be solved).	10 Hours
Module-2	Production - Production function, Laws of returns: Law of variable proportion, Law of returns to scale Cost and Revenue Concepts - Total Costs, Fixed cost, Variable cost, Total revenue, Average revenue and Marginal revenue, Cost-Output Relationships in the Short Run, and Cost-Output Relationships in the Long Run, Analysis of cost minimization.	8 Hours
Module-3	Market - Basic understanding of different market structures, Determination of equilibrium price under perfect competition (Simple numerical problems to be solved), Break Even Analysis-linear approach (Simple numerical problems to be solved).	7 Hours
Module-4	Time Value of Money- Interest - Simple and compound, nominal and effective rate of interest, Cash flow diagrams, Principles of economic equivalence. Evaluation of Engineering Projects-Present worth method, Future worth method, Annual worth method, Internal rate of return method, Cost benefit analysis for	6 Hours
Module-5	Depreciation- Depreciation of capital assert, Causes of depreciation, Methods of calculating depreciation - Straight line method, Declining balance method, SOYD method, After tax comparison of project.	4 Hours
Module-6	Inflation-Meaning of inflation, types, causes, measures to control inflation. National Income-Definition, Concepts of national income, Method of measuring national income. Banking -Commercial bank, Functions of commercial bank, Central bank, Functions of Central Bank.	5 Hours
	Total	40 Hours

Te	Text Books:		
1	Principles of Economics by Deviga Vengedasalam and Karaunagaran Madhavan, Oxford		
2	Riggs, Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India		
Re	Reference Books:		
1	C. S. Park, Contemporary Engineering Economics, 6th Edition, Pearson Education, 2015.		
2	Engineering Economy by William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson		
3	R.Paneer Seelvan, "Engineering Economics", PHI		
4	Ahuja,H.L., "Principles of Micro Economics", S.Chand & Company Ltd		
5			

CO1	Remembering: Define the basic concept of micro and macroeconomics, engineering economics and their application in engineering economy.
CO2	Understanding: Evaluate numerically the effects of changes in demand and supply on price determination of products and services.
CO3	Analyze: the macroeconomic environment and financial systems of the country and its impact on business, society and enterprise.
CO4	Develop: the ability to account for time value of money using engineering economy factors and formulas.
CO5	Apply: knowledge of mathematics, economics and engineering principles to solve engineering problems and to analyze decision alternatives in engineering projects considering upon depreciation,
CO6	Remembering: Define the basic concept of micro and macroeconomics, engineering economics and their application in engineering economy.

Type	Code	Network Theory	L-T-P	Credits	Marks
PC	BTEC-T-PC-301		4-1-0	4	150

Objectives	To expose to the field of Electrical Circuit and analysis
Pre-	Fundamental Electrical Circuit analysis that includes concepts of Electrical
Requisites	Engineering, Calculation of current, voltage, power. Knowledge of Basic fundamental of electrical circuit.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module-1	Basic Concepts: Practical sources, Source transformations, Network reduction using Star – Delta transformation, Loop and node analysis with linearly dependent and independent sources for DC and AC networks.	5 Hours
	Network Theorems: Superposition, Millman's theorems, Thevinin's and Norton's theorems, Maximum Power transfer theorem, Reciprocity Theorem, Compensation Theorem Magnet coupling Circuit: Coupled Circuits: Coefficient of coupling, dot convention, Ideal Transformer, Analysis of multi-winding coupled circuits, Analysis of single tuned and double tuned coupled circuits.	8 Hours
	Experiential learning:- Design a magnetizing coil to know Self-inductance and Mutual inductance. Transient behavior and initial conditions: Behavior of circuit elements under switching condition and their Representation, evaluation of initial and final conditions in RL, RC and RLC circuits for AC and DC excitations.	8 Hours
Module-4	Series Resonance & Parallel Resonance:- Variation of Current and Voltage with Frequency, Selectivity and Bandwidth, Q- Factor, Circuit Magnification Factor, Selectivity with Variable Capacitance, Selectivity with Variable Inductance	4 Hours
	Two port network parameters: Definition of Z, Y, h and Transmission parameters, modeling with these parameters, relationship between parameters sets.	6 Hours

	Total	40 Hours
	Passive Filters using MATLAB.	
	Experiential learning:- Design the Low Pass, High Pass, Band Pass & Band Reject Filter, Active &	
	Filter and its applications.	
Module-6	these transform networks.	
	Transform impedance &transform admittance, Series & parallel combination of	
	singular & shifted function, Convolution integral, Concept of complex frequency,	9 Hours
	using Laplace transform, Unit step, Impulse & ramp functions, Laplace transform of	
	Application of Laplace's Transform & Filter:- Solution of differential equation	

Te	Text Books:			
1	A. Chakrabarthy (2010), Circuit Theory, 5th edition, DhanpatRai& Sons Publications, New Delhi.			
2	A Text Book On Electrical Technology. –B L THERAJA, Vol 1, S.Chand Publications.			
Reference Books:				
1	Introductory Circuit Analysis, Robert L. Boylestad, Pearson, 12th ed., 2012.			
2	Network Analysis, M. E. Van Valkenburg, Pearson, 3 rd ed., 2006.			

CO1	Understand basic concept of AC & DC circuit.
CO2	Illustrate the Design and analysis of circuit theorems and coupling circuit.
CO3	Formulate transient behavior and resonance of DC and AC circuit.
CO4	Apply parameters for different circuit analysis.
CO5	Summarize application of Laplace transformation.
CO6	Explain various Filter and there application.

Experiential learning:-

Self-inductance and Mutual inductance of magnetic circuit.

Resonance circuit.

Design the filter circuits using Mat lab.

Type	Code	NPTEL	L-T-P	Credits	Marks
00	BTEC-T-OO-401		2-0-0	2	150

Objectives	Digital system design course focuses on design digital system from scratch. The
	course focuses on designing combinational and sequential building blocks, using
	these building blocks to design bigger digital systems. During this course we also
	learn how to use Verilog to design/model a digital system.
Pre-Requisites	Basics of Digital Electronics

Module-#	Topics	Hours
	Week 1: Introduction of digital systems. Number system	
	Week 2: Number representation: BCD, floating point numbers	
	Week 3: Boolean algebra, application of Boolean algebra in minimization of	
	Boolean expressions	
	Week 4: Boolean minimization using K-map and Quine McCluskey method Introduction to Verilog	
	Week 5: MSI Logic: Multiplexer, encoder, decoder	
	Week 6: Arthimetic circuits: Adder, subtractor, multiplier, comparator	
	Week 7: Latches and flipflop (SR, JK, T, D), counters	
	Week 8: Sequential logic like Registers, introduction to behavior modeling in	
	Week 9: Finite state machine, state graphs and tables.	
	Week 10: Reduction of state table and state assignments. Arithmetic circuits using sequential design.	
	Week 11: Register transfer level (RTL) design, RTL design examples	
	Week 12: FPGA, VLSI design flow using HDL, introduction to behavior, logic and physical synthesis.	
	Total	12 WEEKS

Te	Text Books:		
1	NPTEL		
Re	Reference Books:		
1	NPTEL		

CO1	A strong sense of identity.
CO2	Connection to and contribution with their world.
CO3	A strong sense of wellbeing.
CO4	Confident and involved learners.
CO5	Effective communicators.

Type	Code	Ability Enhancement Training-C	L-T-P	Credits	Marks
MC	BTSC-T-AET-302		2-0-0	1	150

Objectives	To significantly raise the employability of the students to a level where they are able to clear campu selection process and at the same time develop an attitude of constant self-improvement throughout their career.	Ш
Pre-Requisites	To help students practiced and understand the various company pattern tests.	T
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.	

Module-#	Topics	Hours
	Cubes and dices(Problem based on Single Dice, Two or more Dice), Number	4 Hours
Module-1	series(Constant difference series, Addition Series, Subtraction Series, Division	
	Series, Multiplication Series, Odd or Even Number Series, Prime Number Series,	
	Squares or Cubes series, Alternate Pattern Series, Fibonacci Series, Arithmetic	
	Series, Geometric Series, Triangular series, Mixed Pattern Series, Wrong number	
	series)	
	Coding Alphabet Symbol Numerical Coding, Symbol Based	4 Hours
Module-2	Coding, Alphabet-Symbol-Numerical Coding, Values Coding, Substitution	
	Coding, Decipher Coding), Seating Arrangement (Circular , Linear, Rectangle	
	Double row Arrangement)	
	Direction(Left & Right Dilemma, Direction of shadows, Direction with reference	
	point),	
	Time &Work, Pipe Cisterns(Inlet, Outlet &Leak), Time, speed &	4 Hours
Module-3	Distance(Average speed, Inverse Proportionality of Speed & Time, Meeting Point	inours
1/10 00 010	Questions), Boat & Streams (Stream, Upstream, Downstream, Still	
	Water), Permutation & combination (Fundamental Principle of Counting	
	Permutations as an Arrangement, Combinations as Selections, P(n,r) and	
	C(n,r), Application of Permutation and Combination). Data sufficiency(checking and testing a given set of information).	
	Algebra (Elementary Algebra, Advanced Algebra, Abstract Algebra, Linear	3 Hours
Module-4	Algebra) Mensuration(2D&3D).	3 110u18
		2 Hours
	Height and distance, HCF & LCM, Clocks, Probability	2 110015
Module-5	Calenders (Counting odd day, counting with reference date, without reference	
Module-6	date, Repetition)	3 Hours
wiodule-0	Simplification and approximation (missing numbers , simplifying	3 110u18
	equation), Train problems (length, speed, distance, relative speed,	
	direction), Average, Partnership, Progression (Arithematic, Geometric,	
	Total	20Hours

Te	Text Books:		
1	Quantitative aptitude by R S Aggarwal		
2	Quantitative Aptitude for CAT by Arun Sharma		

CO1	To help students explore their values and career choices through individual skill assessments
CO2	To make realistic employment choices and to identify the steps necessary to achieve a goal
CO3	To develop and practice self-management skills for the work site
CO4	To explore and practice basic communication skills
CO5	To learn skills for discussing and resolving problems on the work site
CO6	To assess and improve personal grooming

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-301	ENVIRONMENTAL ENGINEERING	2-0-0	0	150

Objectives	To recognize the physical, chemical, and biological components of the earth's system	
	and show how they function. An environmental studies major will be able to apply	
	lessons from various courses through field experiences.	
Pre-Requisites	ites Knowledge of Science and technology in Secondary level.	
Teaching Pedagogy	Regular class room lectures with use of ICT and when required, sessions are planned	
	to be interactive with focus on problem solving activities.	

Module	Topics	Hours
Module -1	Components of Earth System: Lithosphere, Cryosphere, Atmosphere, Hydrosphere, Biosphere and Outer space. Ecological concepts and natural Resources: Ecological perspective and value of environment, Environmental auditing, Biotic components. Levels of organizations in environment Ecosystem Process: Energy, Food chain, Environmental gradients, Tolerance levels of environmental factor.	7 Hours
Module -2	Natural Resources covering Renewable and Non-renewable Resources, Forests, water, minerals, Food and land (with example of one case study); Energy, Growing energy needs, energy sources (conventional and alternative). Hydrological cycle, water balance, energy budget, precipitation, infiltration, evaporation and evapotranspiration. Environmental Pollution: Definition, Causes, effects and control measures of:	8 Hours
	Water pollution, Air pollution, Noise pollution, Soil pollution, Marine pollution, Thermal pollution	
Module -3	Nuclear hazards Environmental Issues: Climate change, Global warming, Acid rain, Ozone layer depletion, Sustainable development, Bio gas, Natural gas. Biodiversity, Urban problems related to energy, water scarcity, Water conservation, rain water harvesting, artificial recharge, watershed management, carbon trading, carbon foot print National Ambient Air quality Standards, Noise standards, Vehicle emission standards	6 Hours
Module -4 44 of 60	Drinking water standard (IS 10500), Water Quality Criteria and wastewater effluent standards Water treatment: Water sources and their quality, Lay out of a water treatment plant and working of each unit/ principles of each process i.e. Screening, Aeration, Sedimentation, coagulation, flocculation, Filtration, Disinfection.	6 Hours

Module -5	Miscellaneous treatment: Removal of color, tastes and odour control, removal of iron and manganese, fluoridation and defloridation. Advanced water treatment: Ion exchange, electro-dialysis, RO, desalination Working principles of readymade water filter/purification system commercially available Lay out of a wastewater treatment plant and working of each unit.	6 Hours
Module -6	Solid waste management: Source, classification and composition of Municipal Solid Waste (MSW), Storage and transport of MSW, MSW management, Waste minimization of MSW, Reuse and recycling, Biological & thermal treatment (principles only), land fill Biomedical Waste management – sources, treatment (principles only) and disposal Hazardous Waste Management- Introduction, Sources, Classification, treatment (principles only) Introduction to e-waste management. Environmental impact Assessment: Project screening for EIA, Scoping studies Environmental policies and acts (Air, Noise, Water, Forest, E-waste, Hazardous waste acts).	7 Hours
	Total	40 Hours

Text Book:

1. Environmental Engineering, G. Kiely, TMH, 2007

Reference Books:

- 1. Environmental Engineering, H.S. Peavy, D.R.Rowe and G. Tchobanoglous, McGraw Hill, 1985.
- 2. Introduction to Environmental Engineering, M. L. Davis and D. A Cornwell, McGraw Hill International, 2005.

CO1	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.
	Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions
CO2	
	Identify, formulate, review research literature and analyze complex Environmental Engineering problems
CO3	using fundamentals of mathematics, sciences and engineering.
CO4	Develop solutions for Environmental Engineering problems and design system components and processes to
	meet the specified needs with appropriate consideration for the public health and safety.
CO5	Apply the knowledge of mathematics, Science and Engineering fundamentals for solution of problems of
	Environmental Engineering.
CO6	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.

Type	Code	Analog Electronics Laboratory	L-T-P	Credits	Marks
PC	BTEC-P-PC-401		0-0-2	1	100

Objectives	To design and develop analog circuits which will be useful for amplification, filtering,	
	signal generation, voltage regulation, and data conversion	
Pre-Requisites	Knowledge of Basic Electronics	
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to	
Pedagogy	be interactive with different examples	

Module-#	Topics	Hours
Experiment-1	Design of BJT bias circuit and compare the results.	2 Hours
Experiment-2	Design JEET/MOSFET bias circuit and compare the results.	2 Hours
Experiment-3	Design and simulate BJT common-emitter circuit and compare D.C and A.C performance:	2 Hours
Experiment-4	Design of voltage divider Biasing for JFET and source follower configuration.	2 Hours
Experiment-5	Determining the frequency response of a common emitter amplifier: low frequency, high frequency and mid frequency response and compare with simulated results.	2 Hours
Experiment-6	Study of Darlington connection and current mirror circuits.	2 Hours
Experiment-7	Gain-Frequency response of OP-AMP	2 Hours
Experiment-8	Application of Op-Amp as differentiator, integrator, square wave generator.	2 Hours
Experiment-9	Design of R.C phase shift oscillator	2 Hours
Experiment-10	Study of Power Amplifier.	2 Hours

Type	Code	Programming using PYTHON	L-T-P	Credits	Marks
PC	BTCS-P-PC-405	Laboratory	0-0-3	1	100

Objectives	The objective is to analyze the designing process of combinational and sequential
	circuits, express arithmetic logic and shift micro-operations, identify the addressing
	modes used in macro instructions, apply algorithms for arithmetic operations and
	implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with different examples

Lab No:	Name of the experiments	Hours
1	Python control statement	2 Hours
2	Program on data type using Python.	2 Hours
3	Program on matrix operation using Python	2 Hours
4	Program on Function using Python.	2 Hours
5	Program on String operation in python	2 Hours
6	Program on object-oriented concept using python.	2 Hours
7	File handling in Python.	2 Hours
8	Program related to uses of Python modules (NumPy, Pandas)	2 Hours
9	Python programming using Matplotlib	2 Hours
10	Python programming for linear regression	2 Hours

Text Books:

PYTHON Lab Manual, Department of CSE, GIFT, Bhubaneswar

CO1	Understand the basic concept of Script language.
CO2	Demonstrating the control statement in python
CO3	Experiment on different data types in python.
CO4	Ability to explore python especially the object-oriented concepts, and the built in objects of Python.
CO5	Implementation of Python Modules.
CO6	Ability to Create practical and contemporary applications on Machine learning.

Type	Code	Network Theory Laboratory	L-T-P	Credits	Marks	
P	BTEE-P-PC-301		0-0-2	1	100	

Objectives	To expose to the field of Electrical Circuit and analysis.				
Pre-Requisites	Fundamental Electrical Circuit analysis that includes concepts of Electrical Engineering				
	Calculation of current, voltage, power. Knowledge of Basic fundamental of electrical circuit.				
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to be				
Pedagogy	interactive with focus on real life problem solving activities.				

Expt No	Topic	Hours		
1	Verification of Superposition & Reciprocity Theorem	2 Hours		
2	2 Verification of Thevenin's and Norton's Theorem			
3	Verification of Maximum Power Transfer Theorem	2 Hours		
4	Measure and calculate RL & RC time constant for a given RL & RC circuit	2 Hours		
5	Frequency response of series resonance circuit with analysis and design	2 Hours		
6	Frequency response of parallel resonance circuit with analysis and design	2 Hours		
7	Measure and calculate Z, Y parameters of two-port network.	2 Hours		
8	Design and frequency response of Low pass and high pass filter	2 Hours		
9	9 Design and frequency response of band pass filter			
	PSPICE SIMULATION	2 Hours		
10	1. Simulation of DC Circuits 2. Mesh Analysis 3. Nodal Analysis 4. DC Transient response			
	Beyond Syllabus			
1	Determination of self -inductance, mutual inductance and coupling coefficient of a single phase two winding transformer representing a coupled circuit.	2 Hours		
2	Spectral analysis of a non-sinusoidal waveform.	2 Hours		

Text Books:

1 Network Theory Lab Manual, Department of EEE, GIFT, Bhubaneswar

Ty	Code	Project-III	L-T-P	Credits	Marks
PS	BTPS-P-PS-401		0-0-3	2	150

D 40 -f CO	
Pa ge 49 of 60 Objectives	The objective is to analyze the designing process of combinational and sequential circuits,
	express arithmetic logic and shift micro operations.

Pre-	Knowledge of Electrical & Electronics Circuits			
Requisites				
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are			
Pedagogy	planned to be interactive with different examples			

Projects

- 1. Laser security Alarm
- 2. Binary code to grey code converter circuit
- 3. Train accident prevention using Arduino.
- 4. Smart irrigation system
- 5. Water tank alarm
- 6. Voice-controlled home automation system
- 7. Wireless weather monitoring system
- 8. Smart irrigation system using IoT
- 9. Fire alarm system using temperature and smoke sensors
- 10. Wireless power transmission using electromagnetic induction
- 11.Digital code lock using microcontrollers
- 12. Voltage level indicator for batteries
- 13. Ultrasonic distance measurement device
- 14. Rainwater detector and automated wiper control
- 15 Digital stopwatch using a microcontroller
- 16 Automatic doorbell with visitor counter
- 17. Real-time air quality monitoring system using IoT
- 18 Voltage stabilizer using op-amps

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify Basic Organization of Computers.					
CO2	Identify the addressing modes used in macro instructions.					
CO3	Apply algorithms for arithmetic operations and implementation for ALU design.					
CO4	Develop micro code for typical instructions in symbolic form.					
CO5	Develop the pipeline and its performance.					
CO6	Identify Characteristics of Memory System.					

\

Syllabus for B.Tech (3rd Year) (2023 Admission Batch)

Electronics and Communication Engineering

(Approved by Academic Council and Board of Studies)

GIFT Autonomous Bhubaneswar

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela) Recognized under section 2(f) of the UGC act, 1956

At Gramedika Be Concepted Via Japla Diet Whards Pincade 752054

At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pincode: 752054

3rd Year Course Structure

Fifth Semester							
Theory							
Sl. No.	Catego ry	Course Code	Course Title	WCH L-T-P	Credit		
1	PC	BTEC-T-PC-501	Analog Communication	4-1-0	3		
2	PC	BTEC-T-PC-502	Digital Signal Processing	4-1-0	3		
3	PC	BTEC-T-PC-503	Microprocessor and Microcontroller	4-1-0	3		
4	PE	BTEC-T-PE-501	Mobile Communication	4-1-0	3		
5	PE	BTEC-T-PE-502	Control System	4-1-0	3		
6	МС	BTMC-T-MC-501	Universal Human Values	n 2-0-0	0		
7	AEC	BTEC-T-AEC-505	Ability Enhancement Training-D	2-0-0	1		
Tota	l Hours/ (29	16			
		P	ractical		•		
1	PC	BTEC-P-PC-501	Analog Communication Laboratory	0-0-2	1		
2	PC	BTEC-P-PC-502	Digital Signal Processing Laboratory	0-0-2	1		
3	PC	Microcontroller		0-0-2	1		
4	PS	BTPS-P-PS-504	Seminar-2 0-0-2		1		
5			Summer Internship	0-0-2	2		
Tota	l Hours/ (10	6			
Gran	nd Total H	39	22				

		Si	xth Semester					
		Theory	Atti Scincster					
Sl. No.	Cat eg ory	Course Code	Course Title	WCH L-T-P	Credit			
1	BS	BTBS-T-BS-601	Optimization Engineering	4-1-0	3			
2	PC BTEC-T-PC-601 Microwave and Radar Engineering			4-1-0	3			
3	PC	BTEC-T-PC-602	Digital VLSI Design	4-1-0	3			
4	PC	BTEC-T-PC-603	Digital Communication	4-1-0	3			
5	HS	BTHS-T-HS-601	Entrepreneurship Development	4-0-0	3			
6	00	BTEC-T-OO-601	NPTEL	2-0-0	3			
7	MC BTMC-T-MC-01 Essence of Indian Knowledge Tradition -II		2-0-0	0				
8	AEC	Ability Enhancement Training-E		2-0-0	2			
То	tal Ho	urs/Credit (Theory	y)	30	20			
			Practical					
1	PC	BTEC-P-PC-602	Microwave and Radar Engineering Laboratory	0-0-2	1			
2	PC	BTEC-P-PC-603	Digital VLSI Design Laboratory	0-0-2	1			
3	PC	BTEC-P-PC-603	Digital Communication Laboratory	0-0-2	1			
4 PS BTEC-T-PS-604 Project-II 0-0-2					2			
Tot	Total Hours/ Credit(Practical) 8 5							
Gra	ınd To	tal Hours/ Credit(P	ractical)	38	25			
SUI	SUMMER INTERNSHIPTRAINING for 30Days							

Program Outcomes (UG Engineering)

Program Outcomes (POs) form a set of individually assessable outcomes that a r e the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA are:

- PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problem
- PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern ern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the
- engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

L Lecture

T Tutorial

P Laboratory / Practical / Sessional

WCH Weekly Contact Hours

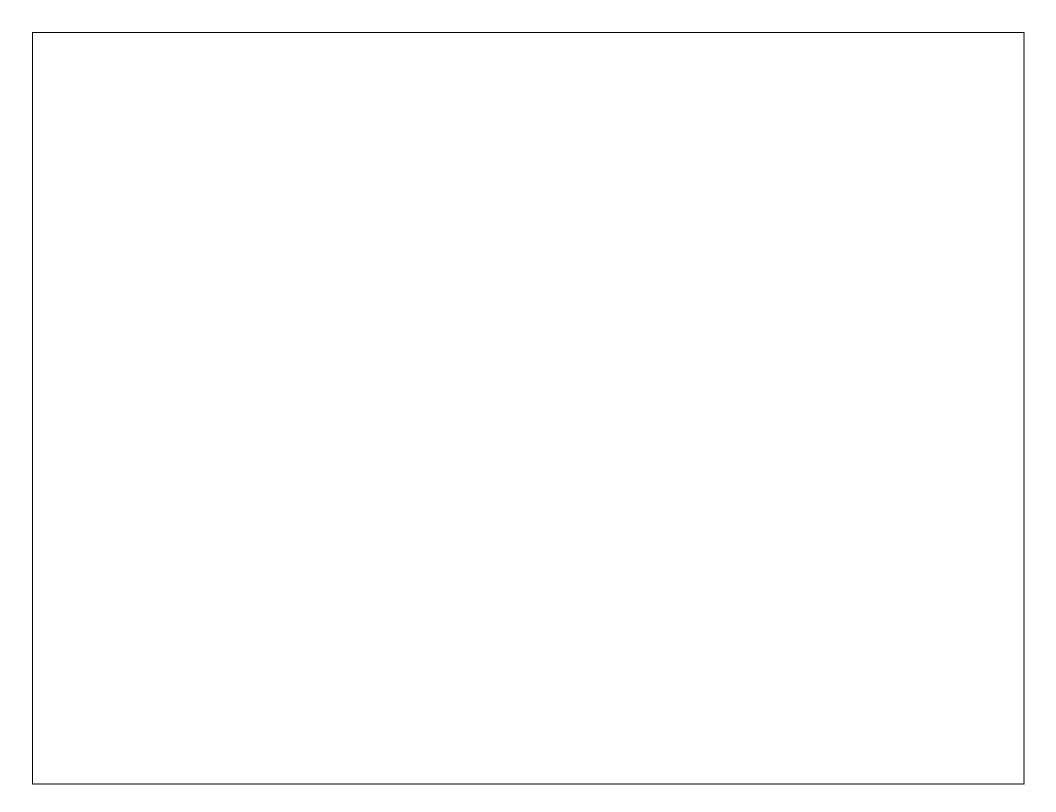
BS Basic Sciences

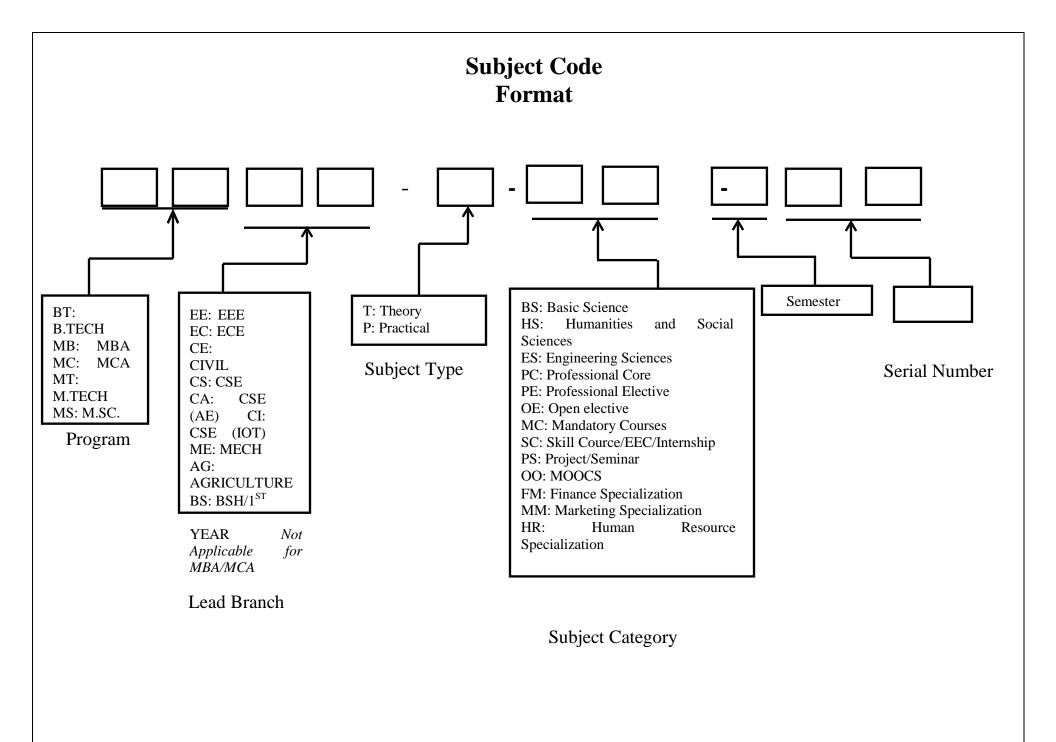
HS Humanities & Social Sciences (including Management) ES

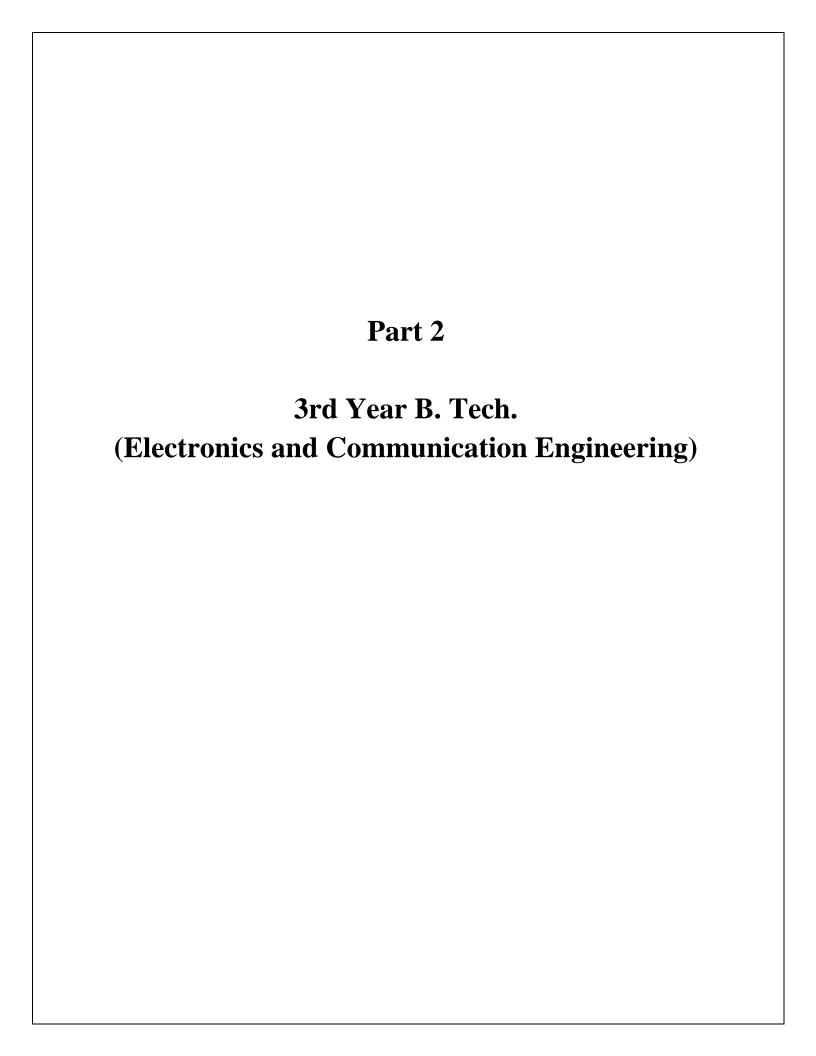
Engineering Sciences

PC Professional Core

PE Professional Elective


OE Open Elective


MC Mandatory Course


SC Skill Course

EEC Employability Enhancement Course

SEPD Skill Enhancement and Personality Development

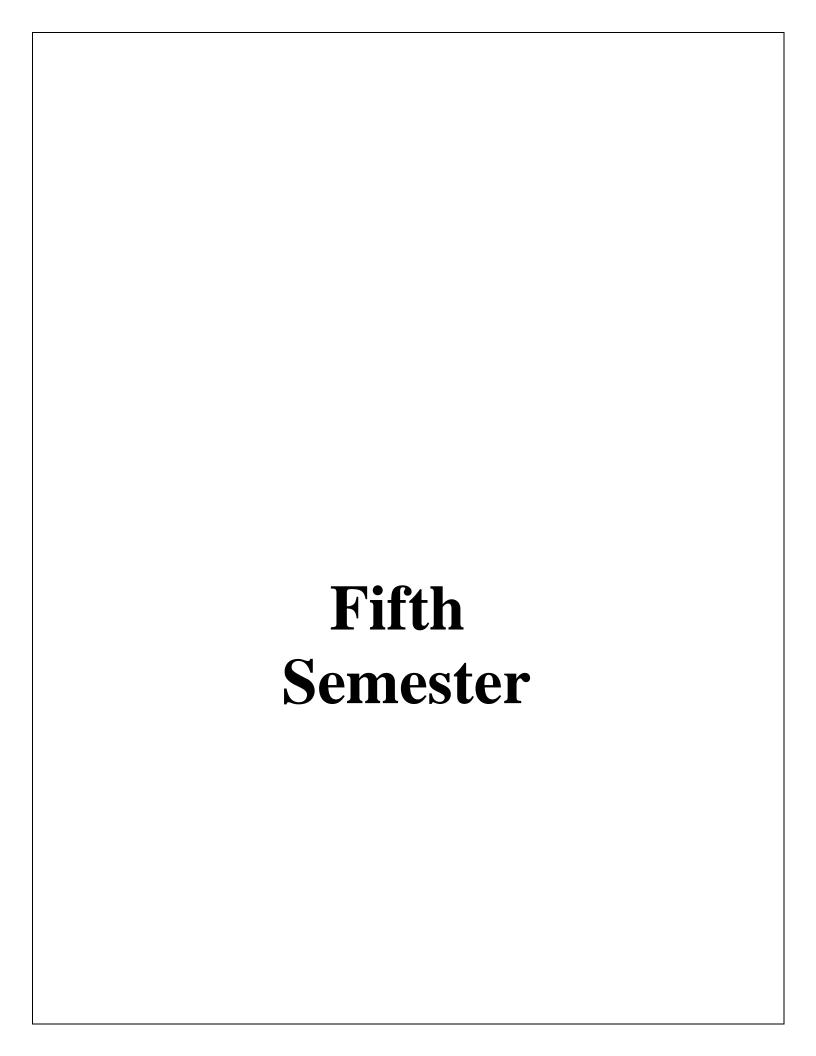
Evaluation Scheme

Mark Distribution for Internal & External Examinations for all Courses- 2023-24

Proposed Internal Examination (B. Tech, Autonomous)							
Sr No	Type of Test	Mark	Frequency	Total Mark	Reduced Mark		
1	Modular Test	25	4	100	50		
2	Online Quiz Test	10	4	40	10		
3	Assignment	10	2	20	10		
4	Subject Specific Project	15	1	15	15		
5	Attendance	15	1	15	15		
	TOTAL 190						
	Pass Mark						

Proposed External Examination (B. Tech, Autonomous)								
Sl No	Type of Test	Mark	Frequency	Total Mark				
1	End Semester Examination	100	1	100				
	Pass Mark							

Instructions:


- 1. Each student must appear in all of the above internal examinations without fail.
- 2. No exemption or accommodation of request will be entertained.
- 3. In case of exigency, or self-illness the student must submit ample evidence to re-appear the test. Since the schedule of the examination is non-negotiable, the request shall be sent to the competent authority.
- 4. Appearance of modular tests is part of the curriculum; hence each student is urged to appear for each modular test. Due penalty as per the examination rule shall be imposed.
- 5. For not qualifying or to improve the individual subject score in internal the student must appear on the improvement test after successful registration in CMS.

Evaluation Process of Practical Subjects:

Components	Marks	Frequency	Assigned To
Attendance	10	Closing of Instruction	To be retrieved from CMS
Daily Performance & Viva- voce	40	<u> </u>	Concerned Faculty (Upload in CMS ir weekly basis)
Lab Record	20	On the day of Experiment	Concerned Faculty
End-Semester Lab Test	30	1	At the end of the semester as per the schedule published by Examination Cell
Total	100		

Evaluation Process of Mandatory Courses:

Components	Marks	Frequency	Assigned To
In-Semester Evaluation	100	1	Examination Cell/ Concerned Faculty
Total	100		

Type	Code	Analog Communication	L-T-P	Credits	Marks
PC	BTEC-T-PC-501	Analog Communication	3-1-0	3	150

Objectives 1-To introduce the concepts of analog communication systems 2-To study different Modulation and different techniques. 3-To introduce the concept of wave propagation.	
Pre-Requisites	Basic knowledge of signals and systems, trigonometry, and probability theory is Required.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Basics of communication system, Simplex and duplex systems, Modes of communication Broadcast and point to point communication, Necessity of modulation, Classification of modulation, sampling theorem and pulse analog modulation, multiplexing-TDM, FDM.	6 Hours
Module-2	Amplitude Modulation: Introduction, Mathematical analysis and expression for AM Modulation index, Frequency spectrum and bandwidth of AM, Power calculations, Generation of AM using nonlinear property, Low and high level modulation, Balance Modulator. Types of AM: DSB-FC, DSB-SC, SSB-SC, ISB and VSB, their generation methods and comparison.	7 Hours
Module-3	Angle Modulation: Introduction, Mathematical analysis of FM and PM, Modulation index for FM and PM, Frequency spectrum and bandwidth of FM, Narrow band and wide band FM Direct and indirect methods of FM generation, Pre emphasis and de-emphasis, Comparison of AM FM and PM	7 Hours
Module-4	Introduction of Radio Receivers and Demodulators, Performances characteristic of receivers Sensitivity, Selectivity, Fidelity, Super heterodyne receivers, RF amplifier, Local oscillator and mixer, IF amplifier, AM Detectors: Envelop detector and practical diode detector. FM Detectors: Slope detector, phase discriminator and ratio detector	8 Hours
Module-5	Noise Introduction, Sources of noise, Classification of noise, Noise calculations (thermal noise), SNR, Noise figure, Noise Factor, Noise Temperature.	6 Hours
Module-6	Radiation and Wave Propagation Radiation: Introduction, Basic Antenna system, Antenna parameters, Di – pole antennas, Yagi Uda antenna. Wave propagation: Ground wave, sky wave space wave, Troposphere scatter, Extraterrestrial propagation. Ionosphere: Structure, properties of layers of Ionosphere.	6 Hours
	Total	40Hours

Text Books	
1	"Electronic Communication System", Kennedy & Devis, Tata Mc Graw Hill.
2	Principles of Communication Systems - Herbert Taub, Donald L Schilling, Goutam Saha, 3rd Edition, McGraw-Hill, 2008.
3	Principles of Communication Systems - Simon Haykin, John Wiley, 2nd Ed.
Reference 1	Books:
1	Analog communications-K.N.Hari Bhat & Ganesh Rao, Pearson Publication, 2 nd Ed
2	Electronic Communications - Dennis Roddy and John Coolean , 4th Edition , PEA, 2004
3	Communication Systems Second Edition – R.P. Singh, SP Sapre, TMH, 2007.
4	Analog and Digital Communication – K. Sam Shanmugam, Willey ,2005
5	Communication Systems – B.P. Lathi, BS Publication, 2006.
Online Res	ources:
1	https://nptel.ac.in/courses/117/105/117105143/: by Prof. G. Das, IIT Kharagpur
2	https://nptel.ac.in/content/storage2/nptel data3/html/mhrd/ict/text/117105143/lec60.
3	http://www.digimat.in/nptel/courses/video/117105143/L22.html
4	http://www.nptelvideos.in/2012/11/communication-engineering.html

CO1	Understand the concept of basic communication system.
CO2	Attain the knowledge about Amplitude Modulation Techniques.
CO3	Attain the knowledge about Amplitude Modulation Techniques.
CO4	Understand the operation of Radio receivers and transmitters.
CO5	Analyze the performance of AM and FM systems in presence of noise signals.
CO6	Understand the concept of wave propagation.

Type	Code	Digital Signal Processing	L-T-P	Credits	Marks
PC	BTEC-T-PC-502	Digital Signal I focessing	3-1-0	3	150

Objectives	1-To study processing of digital signals using Z-transform, 2-To study processing of digital signals discrete Fourier transform. 3-To understand concept of IIR & FIR filters
Pre-Requisites	Basic knowledge of signals and systems is required.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities

Module	Topics	Hours
Module-1	Basic elements of digital signal Processing: Review of Discrete time signals and Discrete time systems .Review of Z-Transform, properties, inverse z-transform. Analysis of Linear time invariant systems –Z transforms –Convolution and correlation.	6 Hours
Module-2	Introduction to DFT:-Discrete Fourier Transform, DFT as a Linear Transformation, Frequency domain sampling and Reconstruction of Discrete Time Signals, Properties of DFT: Periodicity, Linearity, and Symmetry Properties, Multiplication of Two DFTs and Circular Convolution.	6 Hours
Module -3	Linear filtering methods based on the DFT:- Use of DFT in Linear Filtering, Efficient Computation of DFT: FFT Algorithms, Direct Computation of the DFT, Radix-2 FFT Algorithms, Decimation-In-Time (DIT), Decimation-In-Time (DIF). Use of FFT algorithms in Linear Filtering and correlation.	8hours
Module-4	Structure and Design of FIR: Structure for the Realization of Discrete-Time Systems, Structure of FIR Systems: Direct- Form Structure, Cascade-Form Structure Design of FIR Filters: Design of FIR Filters by using Windows method, Design of FIR Filters by Frequency Sampling Method	7Hours
Module-5	Structure and Design of IIR Systems: Direct-Form Structure, Signal Flow Graphs and Transposed Structure, Cascade-Form Structure, Parallel-Form Structure. Design of IIR Filters. Analog Filters: IIR Filter Design by Impulse Invariance, IIR Filter Design by the Bilinear Transformation.	7 hours
Module-6	Introduction to Multi-rate Signal Processing: Interpolation, Decimation, sampling rate conversion by rational factor	6Hours
	Total	40Hours

Text Book	xs:
1	J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications,
1	4th Edition, Prentice Hall India, 2007.
2	A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd Edition, Prentice Hall India,
	1992
3	. S. K. Mitra, Digital Signal Processing : A Computer Based Approach, 4th Edition, McGraw Hill, 2013.
Reference	Books:
1	L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, 2nd Edition, Prentice
1	Hall India, 1992.
2	J. R. Johnson, Introduction to Digital Signal Processing, 2nd Edition, Prentice Hall India, 1992.
3	A. N. Kani, Digital Signal Processing, 2nd Edition, McGraw Hill Education, 2017.
4	P. R. Babu, Digital Signal Processing, 4th Edition, Scitech Publication, 2011.
Online Res	sources:
1	https://nptel.ac.in/courses/117104070/: by Prof. T. K. Basu, IIT Kharagpur
2	https://nptel.ac.in/courses/108/106/108106151/: by Prof. C. S. Ramalingam, IIT Madras
3	https://nptel.ac.in/courses/117102060/: by Prof. S. C. Dutta Roy, IIT Delhi

CO1	Explain the stability and causality of the LTI systems using Z-Transform.
CO2	Analyze discrete signals & systems using DFT technique.
CO3	Use DFT techniques for linear filtering.
CO4	Realize different structures of FIR and IIR discrete time systems.
CO5	Design IIR and FIR filters using various techniques.
CO6	Describe the basics of Multi-rate Signal Processing

Type	Code	Microprocessors and Microcontrollers	L-T-P	Credits	Marks
PC	BTEC-T-PC-503	whereprocessors and wherecontrollers	3-1-0	3	150

Objectives	 1- To be familiar about different microprocessors & microcontrollers, 2- To be familiar with applications specific processor. 3- To be familiar with interfacing of different microprocessor and microcontroller
	Basic knowledge of Digital Electronic Circuits is required
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on theory and programming activities.

Module	Topics	Hours
Module-1	Introduction: 8085 microprocessor & its organization, General architecture, Bus organization, Memory concepts, Pins and Signals, Instruction execution, Timing diagram, Instruction Set & programming, Addressing modes, Memory interfacing, Interrupts	6 Hours
Module-2	Intel 8086 Microprocessor: Bus Interface unit, Execution Unit, Register Organization, Memory Segmentation, Pin architecture, Minimum and Maximum mode, Physical Memory Organization, Memory Interfacing, Interrupts, Addressing Modes, Instructions; Overview of Co-processor Architectures – Intel 80286,80386,80486, Pentium.	6 Hours
Module-3	Introduction to RISC processors; ARM Processor fundamentals, ARM Architecture – Register, CPSR, Pipeline, exceptions and interrupts interrupt vector table, ARM instruction set – Data processing.	8 Hours
Module-4	Advanced ARM Processors: Introduction to CORTEX Processor and its architecture, OMAP Processor and its Architecture. Application of ARM Processor.	10 Hours
Module-5	Interfacing with Peripheral ICs: System level interfacing design with various ICs like 8255 Programmable Peripheral Interface, 8257 DMA Controller, 8259 Programmable Interrupt Controller, 8251 Programmable Communication Interface.	6 Hours
Module-6	Concepts of virtual memory, Cache memory, Microcontrollers: 8051 systems – Introduction to 8051 Microcontrollers, Architecture, Memory Organization ATMEGA 328P microcontroller:-Introduction of ATMEGA 328P,Pin Description,Architecture and Memory Segmentation.	4 Hours
	Total	40 Hours

Text Book	Text Books:		
1	R. S. Gaonkar, Microprocessor Architecture, Programming, and Applications with the 8085,6 th Edition, Penram International Publishing, 2013.		
2	D. A. Patterson and J. H. Hennessy, Computer Organization and Design: The Hardware/Software Interface 5 th edition, Morgan Kaufman Publishers, 2013.		
3	Microprocessors and Interfacing, Programming & Hardware - Douglas V. Hall,McGraw Hill Education Pvt Ltd., 3rd edition.		
Reference I	Reference Books:		
1	Microprocessors & Microcomputer based System Design - Md. Rafiquzzaman, 2nd edition.		
2	Microcontroller Theory & Applications - Deshmukh, McGraw Hill Education Pvt Ltd.		
Online Res	Online Resources:		
1	https://www.electronics-tutorials.ws/		
2	https://nptel.ac.in/courses/108107029/: by Dr. P.Agarwal, IIT Roorkee		
3	https://nptel.ac.in/courses/106108100/: by Prof. Krishna Kumar IISc Bangalore		
4	http://www.electrical4u.com/circuit-analysis.htm		
5	http://www.allaboutcircuits.com		

CO1	To understand the basic concept of 8085 microprocessor, bus organization, memory concept, instruction set, its architecture, Addressing modes etc.
CO2	To analyze the architecture of a 16-bit Microprocessor 8086 including the concept of instruction queue,
CO3	To compare the processors like RISC,ARM etc.
CO4	To analyze the architecture of ARM, CORTEX, OMAP etc processor.
CO5	To understand the features of the peripherals such as PPI, Programmable interrupt control, USART and their interfacing with a 16-bit processor
CO6	To realize basic concept of 8051 and ATMEGA328P microcontroller.

Type	Code	Mobile Communication	L-T-P	Credits	Marks
PE	BTEC-T-PE-501	Widdle Communication	3-0-0	3	150

	-
	1-To know the evolution of Mobile communication and cell concept to improve capacity of the
Objectives	system.
	2-To know the fading mechanism and types of fading and effect of fading on Mobile
	communication.
	3-To know the role of equalization in Mobile communication and to study different types of
	Equalizers and Diversity techniques.
	Basic concepts of communication.
Pre-Requisites	
	Regular classroom lectures with use of ICT as and when required; sessions are planned to be
Teaching Pedagogy	interactive with focus on theory and programming activities.

Module	Topics	Hours
Module-1	Introduction to Cellular Mobile Systems Why cellular mobile communication systems? A basic cellular system, Evolution of mobile radio communications, Performance criteria, Characteristics of mobile radio environment, Operation of cellular systems. Examples for analog and digital cellular systems.	8 Hours
Module-2	Cellular Radio System Design General description of the problem, Concept of frequency reuse channels, Cochannel interference reduction,	6 Hours
Module - 3	Desired C/I ratio, Cell splitting and sectoring. Handoffs Why handoffs and types of handoffs, Initiation of handoff, Delaying a handoff, Forced handoffs, Queuing of handoffs, Power-difference handoffs, Mobile assisted handoff and soft handoff, Cell-site handoff, Intersystem handoff.	6 Hours
Module - 4	Dropped Calls Introduction to dropped call rate. Equalization: Fundamentals of Equalizers, Linear equalizers, Non-linear equalizers, Decision feedback equalizers, MLSE. Introduction to Diversity	8 Hours
Module - 5	Multiple Access Techniques for Wireless Communications Introduction, Frequency Division Multiple Access, Time Division Multiple Access, Code Division Multiple Access and Space Division Multiple Access.	6 Hours
Module - 6	Global System For Mobile (GSM) overview, Examples for 2G, 3G and 4G systems. Introduction to 5G system.	6 Hours
	Total	40 Hours

Text Books:

- 1 Theodore S. Rappaport Wireless Communications Principles and Practice, 2nd Edition, Pearson Education, 2003.
- 2 Andreas F.MOlisch Wireless Communications, John Wiley, 2nd Edition, 2006.

Reference Books:

- 1 Kamilo Feher Wireless Digital Communications, PHI, 2003
- W.C.Y. Lee Mobile Cellular Communications, 2nd Edition, MC Graw Hill, 1995.
- 3 Yi-Bing Lin Wireless and Mobile Network Architectures, 2nd Edition, Wiley, 2008.

Online Resources:

- 1 https://nptel.ac.in/courses/106/105/106105082/: by Prof. A. Pal, IIT Kharagpur
- 2 https://nptel.ac.in/courses/106/108/106108098/: by Prof. H.S. Jamadagni, IISc Bangalore
- 3 https://nptel.ac.in/courses/106/105/106105081/: by Prof. S. Ghosh, IIT Kharagpur
- 4 https://nptel.ac.in/courses/106/105/106105183/: by Prof. S. Chakraborty and Prof. S. K. Ghosh, IIT Kharagpur

CO1	Demonstrate knowledge on : cellular concepts like frequency reuse, fading, equalization, GSM ,CDMA
1 CO2	Demonstrate knowledge hand-off and infertace and apply the concept to calculate link budget using path loss model
CO3	Analyze fading mechanism and types of fading and effect of fading on Mobile communication
CO4	Understand the concept of equalization and different diversity techniques.
CO5	Apply the concept of GSM in real time applications.
CO6	Compare different multiple access techniques in mobile communication.

Туре	Code	Control System Engineering	L-T-P	Credits	Marks
PC	BTEE-T-PC-501	Control System Engineering	5-1-0	4	150

Objectives	1. Understand the concepts of control systems and importance of feedback in control systems. 2. To expose to the field of control system and stability analysis.
Pre-Requisites	3. Analyse different types of control systems like linear and non-linear control systems, etc. Fundamental control analysis that includes concepts of Electrical control systems, And stability analysis electrical systems.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Comprehensive Study of Industrial Control Systems and Feedback Mechanisms:- Introduction to industrial control system. Mathematical models of physical systems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open-Loop and Closed-loop systems. Benefits of Negative Feedback, Signal Flow Graph and Mason's Gain formula.	6 Hours
Module-2	Standard test Signal and its response:- Time response of first and second order systems for standard test inputs. Application of initial and final value theorem. Design specifications for second- order systems based on the time-response. Concept of Stability, Relative Stability analysis. Root-Locus technique. Construction of Root-loci.	8 Hours
Module - 3	Exploring Control System Dynamics & PID Design:- Relationship between time and frequency response, Polar plots, Bode plots. Nyquist-stability criterion. Relative stability using Nyquist criterion – gain and phase margin. Closed-loop frequency response: Constant M Circle, Constant N Circle. Stability, insensitivity and robustness of control systems.	8 Hours
Module - 4	Exploring the methods of stability and concept of PID Design: -Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers	6 Hours
Module - 5	State-Space Mastery: Variables, Stability, and Discrete-Time Systems:- Lead and Lag compensation in designs, Analysis of transient and steady-state system responses, Stability analysis using Routh-Hurwitz criteria	6 Hours
Module - 6	Advanced Control Systems and Applications Types of control systems: linear, non-linear, analog, digital, Different control strategies, Practical applications and exercises	6 Hours
	Total	40 Hours

Text Books:			
1	K. Ogata, "Modern Control Engineering", Prentice Hall, 1991		
2	I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.		
Reference 1	Reference Books:		
1	M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.		
2	B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.		
Online Resources:			
1	https://nptel.ac.in/courses/108/102/108102043/		

CO1	Understanding industrial control systems, encompassing mathematical modeling, hardware analysis, transfer
	functions, feedback control, and signal flow analysis techniques
CO2 Analyze the stability criteria and concept of stability.	
CO3	Listing in frequency-domain analysis and stability criteria with practical application of PID controller tuning
CO3	methods for desired performance and stability margins.
CO4	Acquiring expertise in the relationship between time and frequency responses, including robustness analysis,
CO4	disturbance rejection, and design specifications in the frequency domain
CO5	Apply PLC technique for compensation.
CO6	Developing expertise in state-space models and stability analysis for discrete-time systems.

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-501	UNIVERSAL HUMAN VALUES	2-0-0	0	100

1-To help the students appreciate the essential complementarity between 'VALUES' and 'SKILLS' to ensur		
sustained happiness and prosperity which are the core aspirations of all human beings.		
2-To facilitate the development of a Holistic perspective among students towards life and profession as we		
as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of		
existence. Such a holistic perspective forms the basis of Universal Human Values and movement toward		
value-based living in a natural way.		
3-To highlight plausible implications of such a Holistic understanding in terms of ethical human conduc		
trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.		
The methodology of this course is explorational and thus universally adaptable. It involves a systematic		
and rational study of the human being vis-à-vis the rest of existence. It is a process of self-investigation		
and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a		
proposal and the students are facilitated to verify it in their own right, based on their Natural Acceptance		
and subsequent Experiential Validation - the whole existence is the lab and every activity is a source of		
reflection.		
Formal face-to-face lectures Tutorials, which allow for exercises in problem solving and allow time for		
students to resolve problems in understanding of lecture material. Small periodic quizzes, to enable you		
to assess your understanding of the concepts.		
_		

Module-#	Topics	Hours
Module-1	Foundations of Value Education-A Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education); Understanding Value Education; Self-exploration as the Process for Value Education.	3 Hours
Module-2	Foundations of Value Education-B Continuous Happiness and Prosperity - the Basic Human Aspiration; Happiness and Prosperity-Current Scenario; Method to Fulfill the Basic Human Aspirations.	3 Hours
Module-4	Harmony in the Human Life, Relationships and Society-B'Trust'& 'Respect'—as Foundational Values in Relationship; Other Feelings, Justice in Human-to-Human Relationship; Understanding Harmony in the Society & Universal Human Order.	3 Hours
Module-5	Harmony in the Nature/Existence & Professional Ethics-A Understanding Harmony in the Nature; Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature; Realizing Existence as Co-existence at All Levels	3 Hours

	Harmony in the Nature/Existence & Professional Ethics-B The Holistic Perception of	
	Harmony in Existence; Natural Acceptance of Human Values; Humanistic Education,	4 Hours
	Humanistic Constitution and Universal Human Order; Competence in Professional	
Module-6	Ethics – Ethical Decision Making&Transition towards Value-based Life and Profession.	

Text Books:				
1	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd			
1	Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034- 47-1			
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.			
3	Gaur. R.R., Sangal. R, Bagaria. G.P, A Foundation Course in Value Education, Excel Books, 2009.			
4	Small is Beautiful - E. F Schumacher.			
_	B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted			
5	2008.			

Course Outcomes: At the end of this course, the students will be able to:

To understand and analyses the foundations of value education, essentials of human values and skills, self-

CO1	To understand and analyses the foundations of value education, essentials of human values and skills, self-exploration, happiness and prosperity.			
CO2	Understand and analyze the foundations of value education, continuous happiness, and prosperity and basic human aspirations.			
CO3	Identify and evaluate the role of harmony in human life, relationship and harmony in family and society.			
CO4	Understand and associate the holistic perception of harmony at all levels such as existence of trust and respect justice in human to human relationship.			
CO5	Develop appropriate technologies and management patterns to create harmony in professional and personal lives, harmony in the Nature/Existence such as understanding Harmony in the Nature; Interconnectedness, self-regulation and Mutual Fulfillment.			
CO6	Develop appropriate technologies and management patterns to create harmony in professional and personal lives like Natural Acceptance of Human Values.			

Type	Code	Ability Enhancement Training-D	L-T-P	Credits	Marks
SC	BTSC-T-AET-501		2-0-0	1	150

Objectives	1.To significantly raise the employability of the students
	2.To a level where they are able to clear campus selection process
	3.And at the same time develop an attitude of constant self-improvement throughout their career
Pre-Requisites	Basic knowledge of core branch subjects.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to
Pedagogy	be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours
Module-1	Basics of semiconductors; Diode/Transistor basics and characteristics; Diodes for different uses; Junction & Field Effect Transistors (BJTs, JFETs, MOSFETs); Transistor amplifiers of different types, oscillators and other circuits; Basics of Integrated Circuits (ICs).	3 Hours
Module-2	Basics of MOS and CMOS ICs; Basics of linear ICs, Basics of operational amplifiers and their applications-linear/non-linear.Basics of multiplexers, counters/registers/ memories /microprocessors, design & applications. Digital communication basics: Sampling, quantizing, coding, PCM, DPCM, multiplexing-audio/video.	4 Hours
Module-3	Digital modulation: ASK, FSK, PSK; Multiple access: TDMA, FDMA, CDMA; Basics of multiplexers, counters/registers/ memories /microprocessors, design & applications.	3 Hours
Module-4	Analog versus digital communication & applications: Systems- AM, FM, transmitters/receivers, SNR comparison; Digital communication basics: Sampling, quantizing, coding, PCM, DPCM, multiplexing-audio/video; Digital modulation: ASK, FSK, PSK; Multiple access: TDMA, FDMA, CDMA.	4 Hours
Module-5	Basics of Dbms, Data modelling, Relational Data model, Normalization, Hashing Basics of Data structure, DS array, DS linked list, DS searching, DS sorting Basics of SQL,SQL database.	3 Hours
Module-6	Number analogy, Seating arrangement(linear,circular),Number system, Percentage, Profit and loss SI & CI, HCF and LCM,Time and Work,Pipe and Cistern	3 Hours
	Total	20Hours

Te	Text Books:		
1	Modern Digital and Analog Communications Systems: B.P. Lathi		
2	Semiconductor Physics and Devices: Donald A. Neaman		
Re	Reference Books:		
1	Fundamentals of database systems(Ramez Elmsari,Shamkant B.Navathe)		

CO1	To help students explore their values and career choices through individual skill assessments
CO2	To make realistic employment choices and to identify the steps necessary to achieve a goal
CO3	To develop and practice self-management skills for the work site
CO4	To explore and practice basic communication skills
CO5	To learn skills for discussing and resolving problems on the work site

Type	Code		L-T-P	Credits	Marks
P	BTEC-P-PC-301	Digital Signal Processing Laboratory	0-0-2	1	100

Objectives	To explain the use of MATLAB software in evaluating different signal processing techniques.
Pre-	MATLAB programming language. • Basic operation such as creating file, delete, copy, rename
Requisites	etc should be known.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to
Pedagogy	be interactive with different examples

Expt. No.	Торіс	
1	Verification of Sampling Theorem both in time and frequency domains.	
2	Evaluation of impulse response of a system.	
3	To perform linear convolution of given sequences.	
4	To perform circular convolution of given sequences using (a) the convolution summation formula (b) the matrix method and (c) Linear convolution from circular convolution with zero padding	
5	Computation of N – point DFT and to plot the magnitude and phase spectrum.	
6	Linear and circular convolution by DFT and IDFT method.	
7	Solution of a given difference equation.	
8	Calculation of DFT and IDFT by FFT	
9	Design and implementation of IIR filters to meet given specification (Low pass, high pass, band pass and band reject Filters)	
10	Design and implementation of FIR filters to meet given specification (Low pass, high pass, band pass and band reject filters) using different window functions	

Text 1	ext Books:		
1	Digital Signal Processing Lab Manual, Department of ECE, GIFT, Bhubaneswar		

Course Outcomes:

CO1	Show the physical interpretation of sampling theorem in time and frequency domains	
CO2	Evaluate the impulse response of a system	
CO3	Perform convolution of given sequences to evaluate the response of a system	
CO4	Compute DFT and IDFT of a given sequence using the basic definition and/or fast methods	
CO5	Provide a solution for a given difference equation.	
CO6	Design and implement IIR and FIR filters.	

Type	Code		L-	Credits	Marks
P	BTEC-P-PC-301	Analog Communication Laboratory	0-	1	100

Objectives	The objective of this course is to study electronic communication systems, modulation	
	techniques, digital transmission of analog and digital signal	
Pre-		
Requisites	Basic knowledge of signals and systems, trigonometry, and probability theory is required.	
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to be	
Pedagogy	interactive with focus on problem solving activities.	

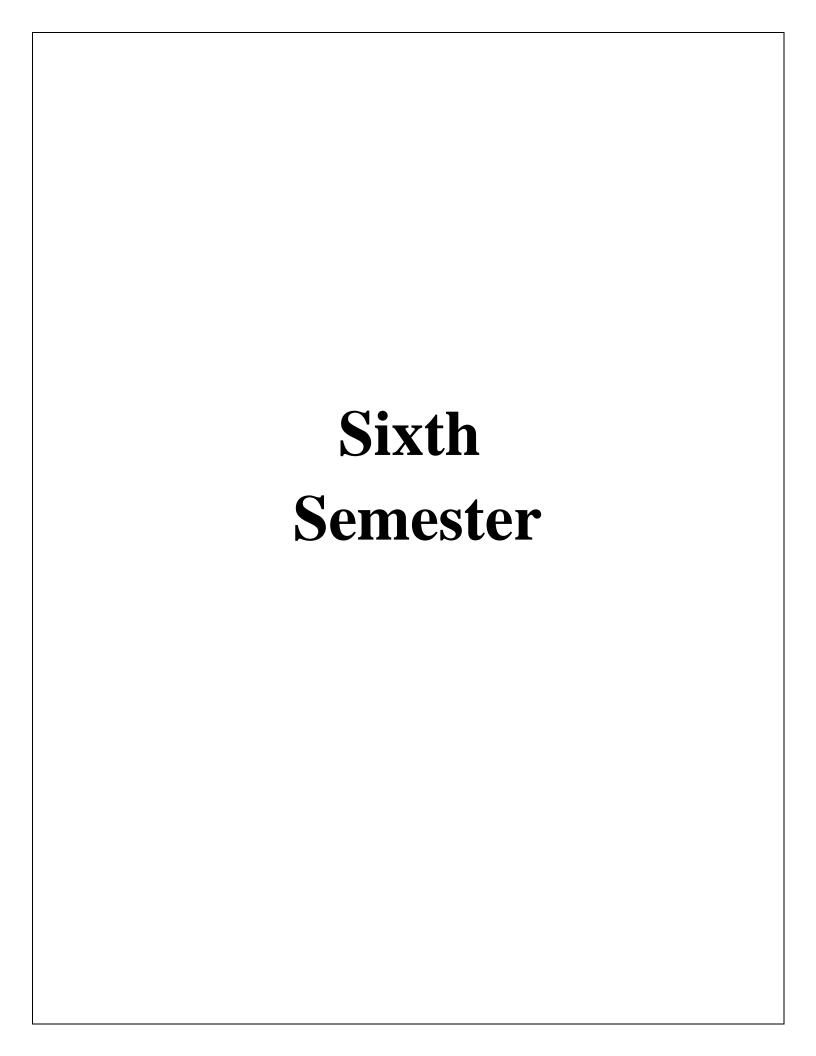
Expt. No.	Topic	
1	Amplitude modulation and demodulation	
2	Frequency modulation and demodulation.	
3	Frequency Division Multiplexing & De multiplexing	
4	Pulse Amplitude Modulation & Demodulation, Pulse Width Modulation & Demodulation, Pulse Position Modulation & Demodulation.	
5	Pulse Code Modulation & Demodulation	
6	Time Division Multiplexing & Demultiplexing	
7	Using MATLAB/LABVIEW generate a carrier and a modulating signal. Modulate the carrier using AM. Show the waveform in time domain and analyze its frequency spectrum	
8	Using MATLAB/LABVIEW generate a carrier and a modulating signal. Modulate the carrier using FM. Show the waveform in time domain and analyze its frequency spectrum	
9	PPM using MAT LAB.	
10	TDM using MAT LAB.	

Text 1	xt Books:		
1	Analog Communication Technique Lab Manual, Department of ECE, GIFT, Bhubaneswar		

Course Outcomes:

CO1	Demonstrate the modulation and demodulation techniques.	
CO2	Demonstrate frequency multiplexing techniques.	
CO3	Analyze various pulse modulation techniques.	
CO4	Demonstrate time multiplexing techniques.	
CO5	Demonstrate modulation techniques using Labview and MATLAB.	

Type				Credits	Marks
P	BTEC-P-PC-301	Microprocessor and Microcontroller Laboratory	0-0-2	1	1


Objectives	The objective of the course is to provide hands-on practice on programming of different		
	microprocessors and microcontrollers and their interfacing with external devices		
Pre-	Basic analytical & logical understanding including basic knowledge and usage of Digital		
Requisites	Electronics is required.		
Teaching	Regular laboratory experiments to be conducted using hardware and software tools under the		
Pedagogy	supervision of the teacher; the experiments shall consist of programming assignments.		

Expt. No.	Торіс
1	Programs of addition of two 8 bit number using 8085.
2	Program of Complement of 16 bit number using 8085.
3	Programs for 16 bit arithmetic operations using 8086.
4	Programs for Sorting and Searching (using 8086).
5	Programs for String manipulation operations (using 8086).
6	Programs for Digital clock and Stop watch (using 8086).
7	Programming using Arithmetic, Logical and Bit Manipulation instructions of 8051 microcontroller.
8	Programming for obstacle detection using ATMEGA 328P microcontroller and IR Sensor.
9	Programming for Fire detection using ATMEGA 328P microcontroller and Fire Sensor.
10	Programming for Gas detection using ATMEGA 328P microcontroller and Gas Sensor.

Text Books: 1 Microprocessor and Microcontroller Lab Manual, Department of ECE, GIFT, Bhubaneswar

Course Outcomes:

CO1	Express the fundamentals of evolution, operating concept, and assembly language programming & instruction
	sets of 8085 Microprocessor.
CO2	Express the fundamentals of evolution, operating concept, and assembly language programming & instruction
	sets of 8086 Microprocessor.
CO3	Demonstration of application specific operations programming of microprocessoor.
CO4	Analyze the assembly level programming of 8051 microcontroller & its functions for various applications.
CO5	Design application specific programming using ATMEGA328P microcontroller.

Type	Code		L-T-P	Credits	Marks
		Optimization Engineering			150

Objectives	1.Impart knowledge on theory of optimization and conditions for optimality for unconstraint and constraint optimization problems 2.Inculcate modeling skills necessary to describe and formulate optimization problems in design and manufacturing 3.Familiarize with the working principle of optimization algorithms used to solve linear and non-linear problems
Pre-	Fundamentals of Engineering Mathematics
Requisites	
	Regular classroom lectures with use of ICT as and when required, sessions are planned to be
Teaching	interactive with focus on problem solving activities.
Pedagogy	r

	g optimization problems, modeling of problems and g,Linear Programming: Formulation of LPP, Graphical	5 Hours
principle of modeling	g,Linear Programming: Formulation of LPP, Graphical	
principle of modelin		
Module-2 Simplex method, Big-1	M method, Dual simplex method, Duality theory.	7 Hours
1	ns: Finding an initial basic feasible solution by Northwest	
	ost rule, Vogel's approximation method, Degeneracy,	10 Hours
	I method, Assignment problems: Hungarian method for	
solution of Assignmen	t problems. Travel	
Module -4 Non-linear program	nming: Introduction to non-linear programming.	5 Hours
Unconstraint optimiz	ation: Fibonacci and Golden Section Search method.	
Module -5 Non-linear programm	ming problem: Constrained optimization with equality	5 Hours
constraint: Lagrange	e multiplier method. Constrained optimization with	
	Kuhn-Tucker condition.	
1	eral characteristics, Deterministic Inventory models: EOQ	8 Hours
model with constant ra	te of demand, different rates of demand, EPQ Model.	
Total		

Text Book	Text Books:	
1	Operation Research: J K Sharma Macmillan India Ltd.	
2	Operation Research, Prabhakar Pai ,Oxford University Press	
Reference	Books:	
1	Operations Research, H.A.Taha, A.M.Natarajan, P.Balasubramanie, A.Tamilarasi, Pearson Education, Eighth Edition.	
2	Engineering Optimization, S S Rao, New Age International Pvt Ltd, 2003.	
3	Engineering Optimization, A.Ravindran, K.M.Ragsdell, G.V.Reklaitis, Wiley India Pvt. Ltd, Second edition.	
4	Operations Research, F.S.Hiller, G.J.Lieberman, Tata McGraw Hill, Eighth Edition, 2005.	
5	Operations Research, P.K.Gupta, D.S.Hira, S.Chand and Company Ltd, 2014.	
Online Re	Online Resources:	
1	https://nptel.ac.in/courses/111/104/111104071/	

CO1	Formulate the engineering problems as an optimization problem.
CO2	Apply necessary and sufficient conditions for a given optimization problem for optimality
CO3	Select appropriate solution methods and strategies for solving an optimization problem and interpret and analyze the solution obtained by optimization algorithms
CO4	Justify and apply the use of modern heuristic algorithms for solving optimization problems
CO5	Solve Engineering Design and Manufacturing related optimization problem using software tools.

Type	Code	Microwave and Radar Engineering	L-T-P	Credits	Marks
		Microwave and Kadar Engineering			150

Objectives	1.To study the objective of this course is to study microwaves, their frequency bands.2.To study the microwave tubes, amplifiers, components, microwave solid state devices3.To study the principles of radar, and scanning & tracking techniques.
Pre-Requisites	Basic knowledge of Circuit Theory, Electromagnetic Theory, and Solid State Physics is required.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Introduction to RF and HF Circuits - Overview of RF and HF circuit ,applications, Introduction to passive components in high-frequency environments, RF Amplifiers and Filters.	6 Hours
Module-2	Microwave Tubes- Construction and operation of Microwave Tube; Types of Microwave Tube, Properties of Klystron Amplifier, reflex Klystron, Magnetron, Travelling Wave Tube (TWT); Backward Wave Oscillator (BWO)	6 Hours
Module-3	Microwave Solid State Devices- Introduction of Microwave Solid State Devices ,Limitation of conventional solid state devices at Microwaves, Diodes (Tunnel, Varactor, PIN), Transferred Electron Devices (Gunn diode); Avalanche transit time effect (IMPATT); Microwave Amplification by Stimulated Emission of Radiation (MASER).	8 Hours
Module -4	Microwave Components- Analysis of Microwave components using s-parameters, Junctions (E, H, Hybrid), Directional coupler; Bends and Corners; Microwave posts, S.S. tuners, Attenuators, Phase shifter, Ferrite devices (Isolator, Circulator, Gyrator); Cavity resonator.	8 Hours
Module -5	Introduction to Radar Systems- Basic Principle ,Block diagram and operation of Radar; Radar range Equation; Pulse Repetition Frequency (PRF) and Range Ambiguities. Doppler Radars- Doppler determination of velocity, Continuous Wave (CW) radar and its limitations, Frequency Modulated Continuous Wave (FMCW) radar	6 Hours
Module- 6	Applications of Radar, Range tracking systems, Doppler (velocity) tracking systems, Basic principle and operation of Moving Target Indicator (MTI) radar, Delay line cancellers, Blind speeds and staggered PRFs. Scanning and Tracking Techniques	6 Hours
	Total	40
		Hours

Text Books:		
1	Microwave Engineering, David M. Pozer, Fourth Edition, Wiley Publications, 2011.	
2	Microwave Engineering, Sushrut Das, Oxford University Press, 2014.	
3	Introduction to radar systems, Merill I. Skolink, McGraw Hill Publications, Second Edition, 2001	
4	Microwave and Radar Engineering, G. S. Rao, Pearson India Publisher, 2014	
Reference	Books:	
1	Microwave devices and Circuits, Samuel Liao, Pearson Education Publisher, Third Edition, 1990.	
2	Foundation of Microwave Engg, R.E. Collin, Second Edition, Wiley Publications, 2007	
3	Microwave devices and Radar Engg, M. Kulkarni; Umesh Publications, Fifth Edition,1998	
4	Microwave Engineering, Subol Kar, University Press.	
5		
Online Re	esources:	
1	https://nptel.ac.in/courses/108/103/108103141/	
2	https://nptel.ac.in/courses/108/101/108101112/	
3	https://nptel.ac.in/courses/117/105/117105130/: by Prof. A. Bhattacharya, IIT Kharagpur.	
4	https://nptel.ac.in/courses/117/105/117105122/: by Prof. A. Bhattacharya, IIT Kharagpur	
5	https://nptel.ac.in/courses/117/101/117101119/: by Prof. J. Mukherjee, IIT Bombay	

CO1	Describe conventional vacuum tubes, their limitations, microwaves, and their sources.
CO2	Explain the principle of operation of various microwave amplifiers.
CO3	Identify, describe, and explain different microwave components
CO4	Explain the basic principle of Radar, various scanning and tracking techniques.
CO5	Understand the principle of microwave generation using solid state devices
CO6	Understand the applications of RADAR.

Type	Code	Digital VI SI Dagign	L-T-P	Credits	Marks
		Digital VLSI Design			150

	1. The objective of this course is to study the design, fabrication.
Objectives	2. To study the testing of devices, circuits & systems using integrated micro fabrication
	3. To study the technologies providing an in-depth coverage of the state of the art in VLSI
	technology.
	Fundamental knowledge of MOSFET and digital electronics is required
Pre-Requisites	
	Regular classroom lectures with use of ICT as and when required; sessions are planned to be
Teaching Pedagogy	interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Introduction to VLSI Design: Overview of VLSI technology, VLSI design flow, Moore's Law and scaling, Fabrication process and technology nodes, Design methodologies: Full-custom, semi-custom, and ASIC design. Digital Design Fundamentals: Boolean algebra and logic gates, Combinational and sequential circuits, Finite State Machines (FSM), Data path design and control logic, Timing analysis and clocking strategies	7 Hours
Module-2	Hardware Description Languages: Introduction to Verilog and VHDLSyntax and semantics of HDL,RTL design and coding guidelines Testbenches and simulation ,Synthesis concepts	7 Hours
Module - 3	CMOS Technology : MOSFET fundamentals,CMOS fabrication and layout,CMOS logic gates design,Transmission gates and pass transistor logic,Design rules and layout techniques,Stick diagram.	6 Hours
Module - 4	Digital System Design : Arithmetic circuits (adders, multipliers),Memory design (SRAM, DRAM, ROM),FPGA architecture and programming,Design for testability (DFT),Low-power design techniques.	6 Hours
Module - 5	Verification and Validation: Verification methodologies (UVM, OVM),Functional verification Coverage-driven verification Formal verification techniques,Hardware-software co-simulation	7 Hours
Module - 6	Physical Design : Floorplanning and partitioning,Placement and routing,Clock tree synthesis (CTS),Power planning and analysis,Signal integrity and parasitics, Advanced Topics (only concept): Advanced node technologies (FinFET, FDSOI)3D ICs and TSV technology Emerging memory technologies (MRAM, ReRAM),High-speed interface design (PCIe, USB, Ethernet) ,EDA tools	7 Hours
	TOTAL	40 Hours

Text Books:		
1	SM. Kang and Y. Leblebici, CMOS Digital Integrated Circuits - Analysis and Design, 3rd Edition, TMH, 2002.	
2	D. A. Hodges, H. G. Jackson, and R. Saleh, Analysis and Design of Digital Integrated Circuits in Deep Submicron Technology, 3rd International Edition, McGraw Hill Education, 2004.	
Reference	Books:	
1	J. P. Rabaey, A. P. Chandrakasan, and B.Nikolic, Digital Integrated Circuits: A Design Perspective, 2 nd Edition, Pearson Education, 2016.	
2	N. H. E. Weste, D. Harris, and A. Banerjee, CMOS VLSI Design - A Circuits and Systems Perspective, 4 th Edition, Pearson Education, 2010	
3	R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd Edition, John Wiley & Sons, 2010.	
4	D. A. Pucknell and K. Eshraghian, Basic VLSI Design, 3rd Edition, PHI Learning, 1995	
5	J. P. Uyemura, Introduction to VLSI Circuits and Systems, John Wiley & Sons, 2006.	
6	W. Wolf, Modern VLSI Design - System on Chip Design, 3rd Edition, Pearson Education, 2004	
Online Re	sources:	
1	https://nptel.ac.in/courses/117/106/117106092/	
2	https://nptel.ac.in/courses/117/106/117106093/	
3	https://nptel.ac.in/courses/117101058/	
4	https://nptel.ac.in/courses/108/107/108107129/	
5	https://nptel.ac.in/courses/106/105/106105161/	

CO1	Identify suitable method to design circuits and systems using modern tools by following appropriate design flow and fabrication steps.
CO2	Understand the structure and operational analysis of MOSFET under external bias condition before and after scaling
CO3	Design, implement and investigate Inverter, combinational and sequential logic circuits using CMOS technology.
CO4	Investigate switching characteristics of inverter to estimate its delay time and power consumption.
CO5	Design and analyze transmission gates, various memory cells, acquire the knowledge of different testing techniques and their reliability.

Type	Code	Digital Communication	L-T-P	Credits	Marks
		Digital Communication			150
Objectives	at the tra 2-Comp and corr	stand the concept of signal processing of digital data ansmitter and receiver. ute performance metrics and parameters for symbol upted channel conditions. stand the principles of spread spectrum communications.	processing		•
Pre-Requisi		ental knowledge of Communication Systems.			
l— — . l ⁻		classroom lectures with use of ICT as and when reque with focus on problem solving activities.	uired; sessi	ons are pla	nned to be

Module	Topics	Hours
	Digital communications : PCM, DPCM, digital modulation schemes (ASK, PSK, FSK QAM), bandwidth, inter-symbol interference, MAP, ML detection, matched filter receiver. SNR and BER.	
Module-1	Digital Modulation Techniques: Phase shift Keying techniques using coherent detection generation, detection and error probabilities of BPSK and QPSK, M-ary PSK, M-ary QAM.	6 Hours
Module-2	Frequency shift keying techniques using Coherent detection: BFSK generation, detection and error probability. Signalling Communication through Band Limited AWGN Channels	
	Signalling over AWGN Channels- Introduction, Geometric representation of signals	6 Hours
Module - 3	Principles of Spread Spectrum: Spread Spectrum Communication Systems: Model of a Spread Spectrum Digital Communication System, Direct Sequence Spread Spectrum Systems, Effect of De- spreading on a narrowband Interference, Probability of error (statement only)	8 Hours
Module - 4	Introduction to Information Theory: Measure of information, Average information content of symbols in long independent sequences. Source Coding: Encoding of the Source Output,	8 Hours
Module - 5	Shannon's Encoding Algorithm, Shannon-Fano Encoding Algorithm, Huffman coding. Error Control Coding: Introduction, Examples of Error control coding, Types of Errors, types of Codes.	6 Hours
Module - 6	Linear Block Codes: Matrix description of Linear Block Codes, Error Detection & Correction capabilities of Linear Block Codes, Single error correction Hamming code	6 Hours
	TOTAL	40 Hours

Text Book	s:		
1	Simon Haykin, "Digital Communication Systems", John Wiley & sons, First Edition, 2014, ISBN 978-0-		
1	471-64735-5.		
2	John G Proakis and Masoud Salehi, "Fundamentals of Communication Systems", 2014 Edition, Pearson		
2	Education, ISBN 978-8-131-70573-5.		
3	K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996		
	Hari Bhat, Ganesh Rao, "Information Theory and Coding", Cengage, 2017. 5. Todd K Moon, "Error		
4	Correction Coding", Wiley Std. Edition, 2006.		
Reference	Books:		
1	Bernard Sklar, "Digital Communications - Fundamentals and Applications", Second Edition, Pearson		
1	Education, 2016, ISBN: 9780134724058.		
	K Sam Shanmugam, "Digital and analog communication systems", John Wiley India Pvt. Ltd, 1996. Web		
2	links and Video Lectures (e-Resources		
Online Re	Online Resources:		
1	https://nptel.ac.in/courses/108102096		
1			

CO1	Analyze different digital modulation techniques and choose the appropriate modulation technique for the
	given specifications.
CO2	Test and validate symbol processing and performance parameters at the receiver under ideal and corrupted
	bandlimited channels.
CO3	Differentiate various spread spectrum schemes and compute the performance parameters of communication
	system.
CO4	Apply the fundamentals of information theory and perform source coding for given message
CO5	Apply different encoding and decoding techniques with error Detection and Correction.

Type	Code	Entrepreneurship Development	L-T-P	Credits	Marks
HS	BTHS-T-OE-601		3-0-0	3	150

	To raise awareness among students about the importance of entrepreneurship as a career	
Objectives	and the necessary skills. To provide information on the entrepreneurial environment and	
related issues. Encourage learners to pursue entrepreneurship as a		
	participate in business incubation. To give them knowledge that will induce in them an	
	entrepreneurial culture and help them to look at the bigger picture.	
Students should develop an Entrepreneurship bent of mind through mot		
Pre-Requisites	and attending an Entrepreneurship program.	
	Regular classroom lectures with the use of ICT as needed. Each session is planned to be	
Teaching	interactive with a focus on real-world problem solving through case lets.	
Pedagogy		

Module	Module Topics		
Module-1	Module-1 Introduction: Concept of Entrepreneur, Entrepreneurship and Enterprise, Definition of Entrepreneurship, Objectives of Entrepreneurship Development, Nature and importance of Entrepreneurship, Entrepreneurial Personality, Types of Entrepreneurs, Role of Entrepreneurship in Economic Development Case let		
Module-2	Module-2 Entrepreneurship Environment: Entrepreneurship Environment in India and Odisha, Phases of Entrepreneurship Development, Identification of Opportunities, Converting Business Opportunities into Reality. Make in India, Atma Nirvar Bharat, Atal Incubation Centre (AIC), MSME, National Small Industries Corporation, MUDRA, and other related programs. Case let		
Module -3	Module -3 Entrepreneurial Motivation: Why to become entrepreneur, Entrepreneurship as a career: Role of family, Entrepreneurship and the role of Odisha government: IPR 2022, Make in-Odisha, Startup policy: Startup ecosystem, Startup Odisha Yatra 2.0. Case Let.		
Module-4	Startup: Make in India, Atma Nirvar Bharat, Atal Incubation Centre (AIC), MSME, National Small Industries Corporation, MUDRA, and other related programs. Sickness of Small-Scale Industries, Causes and symptoms of Sickness, cures of Sickness. Case Let.		
Module-5	Entrepreneurship skills: Meaning of Entrepreneurship skills, Types of Entrepreneurship Skills (Management skills, leadership skills, financial skills, Analytical skills, Critical thinking skills, Strategic thinking skills, planning skills, technical skills, Time management skills, marketing and networking skills, Entrepreneurial skills in the workplace. Case Let.		
Module–6	Small-Scale Industries: Procedure for setting up a small enterprise. Role of Banks and Governments in reviving industries. Case Let.		
	Total	40 Hours	

Text Book	s:
1	Entrepreneurship Development and Management, Vasant Desai, HPH
2	Entrepreneurship Management, Bholanath Dutta, Excel Books
3	Entrepreneurial Development, Sangeeta Sharma, PHI
Reference	Books:
1	Entrepreneurship Development and Management by R.K Singhal, Katson Books., New Delhi
2	Entrepreneurship Development and Management by U Saroj and V Mahendiratta, Abhishek Publications, Chandigarh
Online Re	sources:
1	https://startupodisha.gov.in/startup-policy
2	https://www.startupindia.gov.in/content/sih/en/startup-scheme.html
3	https://www.fundable.com/learn/resources/guides/startup
4	https://dpiit.gov.in/

CO1	Acquire a basic understanding of the entrepreneurial skills.
CO2	Develop critical thinking entrepreneurial skills that will enable them to identify and evaluate entrepreneurial opportunities, manage risks and learn from the results.
CO3	Analyze the process that enables entrepreneurs with limited resources to transform a simple idea into a sustainable success. Establish goals, identify resources and determine the steps required to start and manage a business.
	Develop a business plan for starting up a business
CO5	Apply the knowledge to a real-world perspective through cases and examples derived from real entrepreneurial skills and actions hence developing their ability to apply theory to practice.

Type	Code	NPTEL	L-T-P	Credits	Marks
OO	BTEC-T-OO-401	Microprocessors And Interfacing	2-0-0	2	15 0

Objectives	To understand and design microprocessor based systems
Pre-Requisites	Basics of Digital Electronics

Module-#	Topic	Hours
	Week 1: 8086 Architecture	
	Week 2: 8086 Pins and Signals	
	Week 3: 8086 Instruction Set I	
	Week 4: 8086 Instruction Set II	
	Week 5: 8086 Instruction Set III	
	Week 6: 8086 Instruction Set IV	
	Week 7: 8086 Programming I	
	Week 8: 8086 Programming II	
	Week 9: Memory Interfacing	
	Week 10: 8255 Interfacing Examples	
	Week 11: Interfacing of DC and Stepper Motors	
	Week 12: Interfacing of Key board, Display, USART	
	Total	12 WEEKS

Te	Text Books:		
1	NPTEL		
Re	Reference Books:		
1	NPTEL		

Type	Code	Essence of Indian Knowledge	L-T-P	Credits	Marks
MC	BTMC-T-MC-401	Tradidtion-II	2-0-0	2	150

	Defining the concepts of Indian tradition Knowledge
Objectives	Understanding the importance of roots of knowledge system
	Implementing the traditional knowledge to the day to day life
	Distinguishing the types of traditional knowledge
	Evaluating the ideas and teaching s of TK
Pre-Requisites	
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required; sessions are planned to be interactive with focus on problem solving activities

Module	Topics	Hours
Module-1	Introduction to Traditional Knowledge (Definition TK its Nature, characteristics and scope)	3 Hours
Module-2	Protection and significance of Traditional knowledge (Significance of TK Protection , Value of TK , role of Govt.to harness TK)	3 Hours
Module-3	Legal Frame work and TK (Forest Dwellers Forest right act 2001, 2002, 2006.)	3 Hours
Module-4	Traditional knowledge and Intellectual property (Systems & Legal concepts for the protection of traditional knowledge)	3 Hours
Module-5	Traditional knowledge and Engineering (Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge)	4 Hours
Module-6	Importance of conservation and sustainable development of environment Management of Biodiversity (Traditional societies dependence on environment, Food security of the country and protection of TK)	4Hours
	TOTAL	20 Hours

Course Outcome:

At the end of the Course, Student will be able to:

CO1	Identify the concept of Traditional knowledge and its importance.
CO2	Explain the need and importance of protecting traditional knowledge.
CO3	Illustrate the various enactments related to the protection of traditional knowledge.
CO4	Interpret the concepts of Intellectual property to protect the traditional knowledge.
CO5	Explain the importance of Traditional knowledge in Agriculture and Medicine.

Type	Code	Ability Enhancement Training-E	L-T-P	Credits	Marks
SC	BTSC-T-AET-501		2-0-0	1	150

Objectives	1.To significantly raise the employability of the students
	2.To a level where they are able to clear campus selection process
	3.And at the same time develop an attitude of constant self-improvement throughout their career
Pre-Requisites	Basic knowledge of core branch subjects.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned to
Pedagogy	be interactive with focus on real life problem solving activities.

Module	Topics	Hours
Module-1	Maxwell's equations-basic concepts; Gauss', Stokes' theorems; Wave propagation through different media; Transmission Lines-different types, basics, impedance matching/transformation; Waveguides-basics, rectangular types, modes, cut-off frequency, dispersion, dielectric types; Antennas-radiation pattern, monopoles/dipoles, gain, arrays-active/passive, theory, uses.	4 Hours
Module-2	VLSI technology: Processing, lithography, interconnects, packaging, testing; VLSI design: Principles, MUX/ROM/PLA-based design, Moore & Mealy circuit design; Pipeline concepts & functions; Design for testability.	5 Hours
Module-3	DSP: Discrete time signals/systems, uses; Digital filters: FIR/IIR types, design speech/audio/radar signal processing uses; Microprocessors & microcontrollers, basics interrupts, DMA, instruction sets, interfacing; Controllers & uses; Embedded systems.	3 Hours
Module-4	Communication networks:-Principles /practices /technologies /uses /OSI model/security; Basic packet multiplexed streams/scheduling; Cellular networks, types, analysis, protocols(TCP/TCPIP); Microwave & satellite communication: Terrestrial/space type LOS systems,system design; Communication satellites, orbits, characteristics, systems, uses; Fibre-optic communication systems.	3 Hours
Module-5	Javascript basics, Javascript objects, Javascript oop's Exception handling; HTML basics, HTML attributes; PHP basics, PHP control statement, PHP functions.	2 Hours
Module-6	Number analogy, Seating arrangement(linear,circular),Blood Relation Number system, Percentage, Profit and loss SI & CI, HCF &LCM,Time and Work,Pipe and Cistern,Mensuration	3 Hours
	Total	20 Hours

Text Books:

- 1 Signals and Systems: Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab
- Principles of Electromagnetics: Matthew N.O. Sadiku

Reference Books:

1 Database System Concepts (Avi Silberschatz · Henry F.Korth · S. Sudarshan)

Type	Code		L-T-P	Credits	Marks
P	BTEC-P-PC-601	Microwave and Radar Engineering Laboratory	0-0-2	1	100

Objectives	The objective of this laboratory course is to study the principle of operation of different microwave devices and components and conduct various experiments using these devises to visualize the radiation patterns of different types of antennas.
Pre-	
Requisites	Knowledge of electromagnetic waves and field theory is required.
Teaching	Regular laboratory experiments to be conducted using various microwave devices and
Pedagogy	components under the supervision of the teacher; demonstration will be given for each
1	experiment.

Expt. No.	Торіс
1	Study of microwave components and instruments.
2	Measurement of crystal characteristics and proof of the square law characteristics of the diode.
3	Measurement of klystron characteristics.
4	Measurement of VSWR and standing wave ratio.
5	Measurement of Dielectric constants.
6	Measurement of Directivity and coupling coefficient of a directional coupler.
7	Measurement of Q of a cavity.
8	Calibration of the attenuation constant of an attenuator.
9	Determination of the radiation characteristics and gain of an antenna.
10	Determination of the standing wave pattern on a transmission line and finding the length and position of the short circuited stub.

Course Outcomes:

CO1	Familiarize with various microwave devices and components.
CO2	Determine the frequency of the microwave signal, VSWR, and reflection coefficient of rectangular
	waveguide.
CO3	Understand the principle of operation of different microwave components.
CO4	Characterise Gunn diode and determine dielectric constant of unknown material.
CO5	Visualize the radiation patterns of some test antennas.

Text Books:	
1	RF and HF Lab Manual, Department of ECE, GIFT, Bhubaneswar

Type	Code		L-T-P	Credits	Marks
P	BTEC-P-PC-602	Digital VLSI Design Laboratory	0-0-2	1	100

Objectives	The objective of this laboratory course is to provide hands-on exposure on
	preparing schematic, layout & simulation of complex digital systems using HDL
	(Verilog/VHDL).
Pre-Requisites	Fundamentals of MOSFET and digital electronics is required. The laboratory
	experiments shall go along with the topics taught in the theory class.
Teaching	Regular Laboratory classes with use of ICT as and when required. Practicals are
Pedagogy	planned to be interactive with focus on problem solving activities and real time
	applications with the help of software, FPGA and other peripherals

Expt. No.	Торіс
1	Design a schematic and simple layout for CMOS Inverter.
2	Design a schematic and simple layout for CMOS NAND gate, parasitic extraction and simulation.
3	Design a schematic and simple layout for CMOS NOR gate, parasitic extraction and simulation.
4	Design a schematic and simple layout for Full adder.
5	Design a schematic and simple layout for MUX, DeMUX.
6	Design a schematic and simple layout for D flip-flop.
7	Design a schematic and simple layout for simple and complex Boolean expressions.
8	Design a schematic and simple layout for dynamic logic implementation (Domino logic).
9	Design a schematic and simple layout for dynamic logic implementation (NORA logic).
10	10 Design an ALU or a 4-bit Microprocessor.

Text B	Text Books:		
1	Digital VLSI Design Lab Manual, Department of ECE, GIFT, Bhubaneswar		

Course Outcomes:

CO1	Explain the VLSI Design flow from start to finish.
CO2	Design and implement digital systems using different architectures of VHDL.
CO3	Design, implement, and investigate Inverter, combinational, and sequential logic circuits using CMOS
	technology.
CO4	Implement digital logic circuits in real time using FPGA.
CO5	Understand the timing diagram of combinational and sequential logic circuits.

Typ	e Code		L-T-P	Credits	Marks
P	BTEC-P-PC-603	Digital Communication Laboratory	0-0-2	1	100

Objectives	To learn different digital communication techniques.
Pre-Requisites	Fundamentals of Communication system.
Teaching	Regular Laboratory classes with use of ICT as and when required. Practicals are
Pedagogy	planned to be interactive with focus on problem solving activities and real time
	applications with the help of software, FPGA and other peripherals

Expt. No.	Торіс
1	Generation and reception of different types of signals like ASK
2	Generation and reception of different types of signals like PSK,
3	Generation and reception of different types of signals like FSK.
4	Study the functioning of Delta modulator
5	Experimentally compare different forms of BPSK, analyze their Spectrum with DSO.
6	Experimentally compare different forms of QPSK, analyze their Spectrum with DSO.
7	QPSK using MAT LAB
8	Study the functioning of Adaptive Delta modulator.
9	To generate and demodulate amplitude shift keyed (ASK) signal using MATLAB
10	To generate and demodulate frequency shift keyed (FSK) signal using MATLAB

Text B	Text Books:	
1		
	Digital Communication Lab Manual, Department of ECE, GIFT, Bhubaneswar	

Course Outcomes:

CO1	Evaluate the performance of PCM, DPCM and Delta modulation schemes.
CO2	Implement different digital modulation schemes like FSK, PSK, and DPSK.
CO3	Analyze source/channel encoding & decoding methods.
CO4	Simulate Pulse Digital Modulation & demodulation using MATLAB.
CO5	Simulate digital communication techniques like ASK, FSK & PSK.