Final Syllabus for B.Tech (First year) (2023 Admission Batch)

All Branches

(To be approved by Academic Council and Board of Studies)

GIFT Autonomous College

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela) Recognised under section 2(f) of the UGC act, 1956 At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pincode: 752054

1st Year Course Structure

		-	irst Semester					5	Second Semester		
			Theory						Theory		
SI. No.	Category	Course Code	Course Title	WCH L-T-P	Credit	SI. No.	Catego ry	Course Code	Course Title	WCH	Credi
1	BS	BTBS-T-BS-101	Mathematics I	4-0-0	3	1	BS	BTBS-T-BS-201	Mathematics II	L-T-P 4-0-0	3
2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2	2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2
3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical Engg./ Basic Electronics Engg.	3-0-0	2	3	ES	Basic Electrical Engg/ 3TBS-T-ES-101/ Basic Electrical Engg/ Basic Electronics Engg./ Basic Electronics Engg./		3-0-0	2
4	ES	BTBS-T-ES-103	Basic Programming Skills	4-1-0	3	4	ES	BTBS-T-ES-203	Programming Using Data Structure	4-1-0	3
5	ES	BTBS-T-ES-104/ BTBS-T-ES-105	Basic Mechanical Engg/ Basic Civil Engineering	3-0-0	2	5	ES	BTBS-T-ES-104/ BTBS-T-ES-105	Basic Mechanical Engg/ Basic Civil Engineering	3-0-0	2
6	HS	BTBS-T-HS-101	English for Engineers-I	2-0-0	1	6	HS	BTBS-T-HS-201	English for Engineers-II	2-0-0	1
7	МС	BTBS-T-MC-101/ BTBS-T-MC-102	IT & IS /Constitution of India	2-0-0	0	7	МС	BTBS-T-MC-101/ BTBS-T-MC-102	IT & IS /Constitution of India	2-0-0	0
Total Hours/ Credit (Theory) 23 13 Total Hours/ Credit (Theory)					23	13					
			Practical								
1	BS	BTBS-P-BS-102/ BTBS-P-BS-103	Elements of Engineering Physics Lab/ Applied	0-0-2	1		Practical				
2	ES	BTBS-P-ES-101/	Chemistry Lab Basic Electrical Engg. Lab/	0-0-2	1	1	BS	BTBS-P-BS-102/ BTBS-P-BS-103	Elements of Engineering Physics Lab/ Applied	0-0-2	1
Z	E2	BTBS-P-ES-1017 BTBS-P-ES-102	Basic Electronics Engg. Lab	0-0-2	1	2	ES	Chemistry Lab BTBS-P-ES-101/ Basic Electrical Engg. Lal DTBC D EC 102 Deci Electronice Engl.		0-0-2	1
3	ES	BTBS-P-ES-103	Basic Programming Skill Lab	0-0-3	1.5			BTBS-P-ES-102 BTBS-P-ES-203	Basic Electronics Engg. Lab		
4	ES	BTBS-P-ES-104/	Basic Mechanical Engg lab/	0-0-2	1	3	ES	B1B3-P-E3-203	Programming Using Data Structure Lab	0-0-3	1.5
		BTBS-P-ES-105	Basic Civil Engineering lab			4	ES	BTBS-P-ES-104/	Basic Mechanical Engg lab/	0-0-2	1
5	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Engineering Graphics with AutoCAD /	0-0-3	1.5			BTBS-P-ES-105	Basic Civil Engineering lab		
6	HS	BTHS-P-HS-101	Workshop Practice-I English for Engineers Lab-I	0-0-2	1	4	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Engineering Graphics with AutoCAD / Workshop Practice-I	0-0-3	1.5
7	DC		Duplicat 1	0.0.2	1	5	HS	BTBS-P-HS-201	English for Engineers Lab-II	0-0-2	1
7	PS	BTPS-P-PS-101	Project-1	0-0-2	1	6	PS	BTPS-P-PS-201	Project-2	0-0-2	1
	1		Fotal Hours/ Credit (Practical)	16	8	o	гэ	0110-1-10-201	110JEUL-2	0-0-2	
		Grand 1	otal Hours/ Credit (Practical)	39	21		·		Total Hours/ Credit (Practical)	16	8
Grand Total Hours/ Credit (Practical)					39	21					

Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA are:

PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem Analysis**: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct Investigations of Complex Problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective

Page **3** of **66**

reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

L	Lecture
Т	Tutorial
Р	Laboratory / Practical / Sessional
WCH	Weekly Contact Hours
BS	Basic Sciences
HS	Humanities & Social Sciences (including Management)
ES	Engineering Sciences
PC	Professional Core
PE	Professional Elective
OE	Open Elective
MC	Mandatory Course
SC	Skill Course
PS	Project/Seminar/Internship

Part I 1st Year B. Tech. (Common to All Branches)

Page **6** of **66**

<u>Contents</u> First Year B.Tech

Curriculum Structure

B.Tech (1st Semester & II nd Semest

Item	Page No
Curriculum Structure	2
Evaluation Process	8
Details Syllabus	
Theory	
Introduction to Mathematics I	9-10
Elements of Engineering Physics	11-13
Applied Chemistry	14-16
Basic Electrical Engineering	17-19
Basic Electronics Engineering	20-21
Basic Programming Skills	22-23
Basic Mechanical Engineering	24-25
Basic Civil Engineering	26-28
English for Engineers-I	29-31
IT & IS	32-34
Constitution of India	35-36
Introduction of Mathematics-II	37-38
Programming Using Data Structure	39-40
English for Engineers-II	41-42
Practical	
Elements of Engineering Physics Lab	43-44
Applied Chemistry Lab	45-46
Basic Electrical Engineering Lab	47-48
Basic Electronics Engineering Lab	49-50
Basic Programming Skills lab	51-52
Basic Mechanical Engineering Lab	53-54
Basic Civil Engineering Lab	55-56
Engineering Graphics with AutoCAD	57-58
Workshop Practice-I	59-60
English for Engineers Lab-I	61
Programming Using Data Structure Lab	62-64
English for Engineers -II	65-66

Page **7** of **66**

Evaluation process

Components	Marks	Frequency	Assigned To
Quiz Test	5	2	Concerned Faculty
Surprise Test	5	2	Concerned Faculty
Assignment	5	2	Concerned Faculty
Attendance	5	Closing of	To be retrieved from CMS
Attendance	5	Instruction	To be retrieved from Civis
		1 (Before	
Project	10	Closing of	Concerned Faculty
		Instruction)	
Mid-Semester Examination	20	1	Examination Cell
End-Semester Examination	100	1	Examination Cell
Total	150		•

1. Evaluation Process of Theory Subjects:

2. Evaluation Process of Practical Subjects:

Components	Marks	Frequency	Assigned To
Attendance	10	Closing o Instruction	f To be retrieved from CMS
Daily Performance & Viva-voce	40	On the day o Experiment	fConcerned Faculty (Upload in CMS in weekly basis)
Lab Record	20	On the day o Experiment	f Concerned Faculty
End-Semester Lab Test	30	1	At the end of the semester as per the schedule published by Examination Cell
Total	100		

3. Evaluation Process of Skill Courses:

Components	Marks	Frequency	Assigned To		
End-Semester Examination 100		1	Examination Cell/ Concerned Faculty		
Total	100				
4. Evaluation Process of Mandatory Courses:					
Components	Marks	Frequency	Assigned To		
In-Semester Evaluation	100	1	Examination Cell/ Concerned Faculty		
Total	100				

Туре	Code	Mathematics - I	L-T-P	Credits	Marks
BS	BTBS-T-BS-111	Mathematics - 1	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of ordinary differential equations and applications, solution of system of linear equations using matrix, Eigen vectors & Eigen values of matrices with applications.
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
	Solution of first order differential equations, Linear equation, Bernoulli's equation.	
Module-1	Second order differential equations with constant coefficients, Euler-Cauchy equation.	12 Hours
	Experiential learning-Applications of differential equations in 2D using MATLAB.	
	Introduction to vector space, sub space, linearly independent and linearly dependent	
Module-2	vectors, solution of system of linear equations, Gauss elimination, and Gauss-Jordan	13 Hours
	methods, Determinant, Inverse of a matrix, Rank of a matrix. Basics of linear	•
	transformation, Eigen values and Eigen vectors.	
	Experiential learning- Blending system of linear equations in Gauss elimination	
	method, Computation of Eigen values and Eigen vectors using MATLAB.	
	Vector Differential Calculus: Vector and Scalar functions and Fields, Derivatives,	
Module-3	Curves, Tangents and Arc length, Gradient, Divergence and Curl with applications.	8 Hours
	Average, Problems on Ages, Percentage, Profit and Loss, Ratio and Proportion, Time	
Module-4	and Work, Time and Distance, Simple and Compound Interest.	12 Hours
	Total	45 Hours

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, Quantitative Aptitude For Competitive Examinations, S. Chand publication.

Reference Books:

R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.

R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.

R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.

R4. A. Sharma, Quantitative Aptitude, Mc Graw Hill Education Pvt. Ltd

R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley Publication

Online Resources:

- 1. https://nptel.ac.in/courses/111106100
- 2. https://nptel.ac.in/courses/111105121
- 3. https://nptel.ac.in/courses/111104137
- 4. https://nptel.ac.in/courses/111107108
- 5. https://nptel.ac.in/courses/111106051
- 6. https://nptel.ac.in/courses/111105134

Course Outcomes: At the end of this course, the students will be able to:

CO1	Find the general solution of first and second order ordinary differential equations and use the general solution to find the specific solution for given initial value problems.
CO2	Solve and demonstrate various physical models through second order differential equations.
CO3	Use the understanding of matrix algebra to solve systems of linear equations, harmonics problems, population models etc. arising in various engineering fields.
CO4	Demonstrate knowledge and applications of Eigen value problems related to engineering disciplines.
CO5	Application of mathematics for engineers through MATLAB.
CO6	Know the basic concepts of quantitative aptitude to meet real life requirements.

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-102	Elements of Engineering Physics	4-0-0	2	150
Object	Ph 2. the 3.	To expose students to the fundamental points to understand the types of motion. To analyze the concepts of mechanics, ose students for advanced level courses. To demonstrate the ability to identify nerical, and mathematical reasoning, to situation To adaptability to new developments in science.	cillations, w and apply ns of the phy	aves and opt the appropr ysical world.	ics to prepar
Pre-Re	equisites Cla	ss 12 th level Physics course			
Teachiı	0 0.	gular classroom lectures with use of ICT anned to be interactive with focus on problem		-	sessions are

Module-#	Topics	Hours
	Oscillation, waves and Mechanical Properties	
Module-1	Simple, damped and forced oscillations, resonance, coupled oscillations.	12 Hours
	Wave and wave equation, Superposition of waves.	
	Interference, Young's double slit experiment, Newton's rings, Diffraction,	
	Fraunhofer diffraction by single slit, Diffraction Grating, Polarization, Malus'	
	Law, Brewster's Law.	
	Mechanical Properties of Matter Stress, strain, Hooke's law, elastic constants	
	and their relations, stress-strain diagrams	
	Experiential learning:- Different Types of Oscillator circuits	
	(Using inductor and capacitor frequency will be determined)	
Module-2	Electromagnetism and Concept of Quantum mechanics	
	Divergence, Curl and Gradient, Line, Surface and volume integral, Gauss	10 Hours
	divergence theorem, Stokes theorem (Only Statements, no proof), Gauss's law,	
	Ampere's law and Faraday's law of electromagnetic induction, Maxwell's	
	equations in integral and differential form.	
	Black body radiation, Planck's law, photo electric effect (concept and equation),	
	Matter waves, de Broglie hypothesis, Heisenberg's Uncertainty Principle and its	
	application, Schrodinger's wave equation – Time independent and Time	
	dependent equations, Free particle, Particle in a one dimensional rigid box.	
	Experiential learning:-Soft image using quantum Machine learning Algorithm	

Module-3	Engineering Materials	10 Hours
	Semiconducting Material: Defects in solids (Elementary idea), Concept of	
	energy bands in solids, carrier concentration and conductivity in semiconductors	
	with temperature dependence, construction and working of PN junction diode.	
	Dielectric materials, Dielectric Polarization, Dielectric Breakdown, Dielectric constant and loss, Electromagnetic wave in dielectric medium.	
	Superconducting materials: Superconductivity, Critical parameters, Meissner	
	effect, Type I & Type II superconductors, BCS theory, applications of super	
	conducting materials.	
	Nano material: Classifications, Quantum confinement, surface to volume ratio,	
	Graphene and its structure, Application.	
	Experiential learning: Magnetic energy storage devices, Construction of battery	
	and diode.	
	Quantum Statistics and Optoelectronic devices	
Module-4	Statistical Mechanics: Statistical distributions: Maxwell-Boltzmann, Molecular	12 Hours
	Energies in an ideal gas, Bose-Einstein and Fermi-Dirac statistics.	
	Laser: Spontaneous and stimulated emission, Einstein's coefficients, Population	
	inversion, Light amplification, Basic laser action, Types of laser, Ruby and He-	
	Ne lasers, applications.	
	Fiber Optics: Optical fiber and its principle, acceptance angle, numerical	
	aperture for step and graded index fibers, attenuation mechanism in optical	
	fibers, applications of optical fibers.	
	Experiential learning: Optical fiber communication, LED	
	Design different types of sensors using optical fiber.	
Total		44 Hours

Text Books:

T1. Principles of Engineering Physics-Vol. I and II by M. Khan & S. Panigrahi, Cambridge university Press

T2. Physics for Engineering degree students, B. B Swain & P. K Jena.

Reference Books:

- R1. Electronic Devices and Circuits Millman, Halkias and Jit, Tata McGraw Hill
- R2. Concepts of Modern Physics : A Beiser, S Mahajan, S. Raichoudhury
- R3. Optics: A. K. Ghatak
- R4. Introduction to Solid State Physics: S. O. Pillai
- R5. Properties of matter: D. S. Mathur
- R6. Heat and Thermodynamics: N Subramaniam

Online Resources:

- 1. <u>https://nptel.ac.in/courses/122106027</u>
- 2. <u>https://nptel.ac.in/courses/115105121</u>
- 3. <u>https://onlinecourses.nptel.ac.in/noc22_ph06/preview</u>
- 4. <u>https://nptel.ac.in/courses/115105097</u>
- 5. <u>https://nptel.ac.in/courses/108106161</u>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concepts of waves, oscillation and its significance.
CO2	Acquire skills to apply formulas of optics and wave physics.
CO3	Gain Acquire Knowledge of basic concepts of electric and magnetic fields.
CO4	Develop the concept of different engineering material and their applications.
CO5	Understand the basic knowledge of thermodynamic and use them to solve practical problems.
CO6	Develop a comprehension of the current basis of broad knowledge in Modern physics.

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-103	Applied Chemistry	4-0-0	2	150

	The objective of this course is to make students learn about basic concepts and application of Chemistry from Industrial, Pharmaceutical, research, agriculture and life science point of view.	
-	A fundamental knowledge of Quantum, Inorganic chemistry, along with basics of Periodic table, properties of metal are to be clear.	
0 00	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Module-1	Quantum Mechanics and its application: Failure of classical mechanics and introduction to quantum mechanics, Photoelectric effect, Postulates of Quantum mechanics, Schrodinger's wave equation (Derivation not required), Particle in One dimensional box, Significance of eigen value and eigen function. Zero point energy.	12 Hours
	Phase rule and its application : Definition of phase, component and degree of freedom ,one component system, Water, Sulphur system, Curves and triple points, meta stable triple point, Two component alloy systems: Bi-Cd, eutectic point	
	Experiential learning:- Preparation of alloys, Isolation of Salts from Mixtures (By adjusting Temperature and Composition)	
Module-2	 Electro Chemistry and its application: Electro chemical cells, Dry cell, Alkaline battery, Ni-Cd battery, Li-ion Battery, Pb-acid storage cell Fuel Cells: Definition, Different types of fuel cell, Hydrogen blue fuel cell, FCEVs 	13 Hours
	Corrosion : Theory and mechanism of corrosion, Types, differential aeration corrosion, water line corrosion, Pitting, stress, SCC, galvanic corrosion, Caustic embrittlement, Factors affecting corrosion, Corrosion Control, corrosion inhibitors: Cathodic protection, Metal coatings.	
	Experiential learning:- Preparation of dry cell	
	(Using metal ,carbon rod and insulating Separator)	

Total	Experiential learning:- CNTs are synthesized by thermal CVD method using hydrocarbon gas as carbon source (Using Quartz tube and RF heater)	45 Hours
Module-4	Nano materials: Introduction, Classification, characteristics, 0D,1D, 2D Nanomaterials, Synthesis: Top Down & Bottom Up approach, Application to Pharmaceutical and Research.	8 Hours
	Experiential learning:- Preparation of Hexamethyelene diamine Adipic Acid(Nylon 66) Polymer. (Using Adipoyl Chloride)	
	Polymer : Degree of polymerization, Thermosetting and thermoplastic polymer with examples: Polethene, PVC, Nylon-6, Teflon and their applications, Rubber: Natural rubber, Vulcanized rubber.	
Module-3	Fuel : Classification, calorific value, refining of crude oil, cracking, fuel for I/C engine, knocking, anti-knocking, Octane rating. Diesel engine fuels, Cetane rating, Combustion calculations. Gaseous fuel: LPG, CNG, Biogas fuel, Alternate Fuels, carbon foot print, carbon trading	12 Hours

Text Books:

T1.Theory & Practical's of Engineering Chemistry, By Shashi Chawla, Publisher: Dhanpati Rai & CO.(Pvt.) Ltd

T2. Engineering Chemistry Vol-I & II, Author: Jain & Jain, Publisher: Dhanpati Rai Publishing Company.

T3. Engineering Chemistry, Author: Prasant Rath, 2015, Cenage Learning India Pvt, Ltd

T4. Textbook on Engineering chemistry. Author: Achyutananda acharya & Biswit Samantaray, publisher: Pearson

Reference Books:

R1. Theory & practical's of engineering chemistry, by Shashi Chawla, publisher: Dhanpati Rai & CO.(Pvt.) Ltd

R2. Engineering chemistry vol-i & II, author: Jain & Jain, publisher: Dhanpati Rai publishing company.

R3. A textbook of engineering chemistry, author: Dr. Rajshree Khare publisher: S.K. Kataria & sons.

R4. Textbook of nanoscience and nanotechnology. Mcgraw Hill Education (India) Pvt. Ltd., 2012.

R5. Nanostructures & Nanomaterials: synthesis, properties and applications- g. Cao and Y. Wang, world scientific Pvt.

Ltd.; 2nd edition

Online Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cells
- 2. https://www.britannica.com/science/polymer
- $3.\ https://www.niehs.nih.gov/health/topics/agents/sya-nano/index.cfm$
- $4.\ https://afdc.energy.gov/vehicles/fuel_cell.html$
- 5. https://www.researchgate.net/publication/258761372

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe graphs of one and two component system (curves) and their characteristics.
CO2	Solve quantum energy related problem and determine the quantized energy of different energy levels.
CO3	Explain the methodology of corrosion occurrence in different cases and its prevention to optimum level.
CO4	Explore the concepts and methods of blending of fuels with better Cetane and Octane number.
CO5	Use the concept of Polymer Synthesis, Nano material synthesis methodologies and types of nanomaterial.

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-101	Basic Electrical Engineering	3-0-0	2	150

•	To expose to the field of electrical &electronics engineering, and to acquire the fundamental knowledge in the field.		
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education		
0 00	Teaching Pedagogy Regular classroom lectures with use of ICT as and when required, sessions ar planned to be interactive with focus on problem solving activities.		

Module-#	Topics	Hours
Module-1	Introduction to Electrical power system: An overview of Electrical Engineering, Sources of energy, steam, hydro and nuclear power generation, Renewable source of Power generation and general structure of electrical Transmission, Distribution, and Utilization & Conservations. DC Circuits: Study of Electrical Elements (R, L, C). Ohm's Law. Series & Parallel combination. KCL, KVL, Nodal & Mesh analysis. Star Delta Conversion. Superposition theorem, Thevevnin's theorem, Experiential learning:- Power generating station (Construction of Small hydro plant, Biomass plant) LED light using solar energy.	10 Hours
Module-2	AC fundamentals: Sinusoidal Wave form, Peak, RMS, Average value. Concept of Real Power, Reactive Power, Apparent Power &Power factor. Analysis of 1- phases AC circuit. Introduction to 3- phase system. Line & Phase quantity in star and delta connection, Analysis of 3- phases balanced AC circuit. Concept of resonance in series and parallel R-L-C circuits. Magnetic circuits: Electro magnetism, simple magnetic circuit, magnetic material, B-H curve. Experiential learning:- Design of Magnetic Circuits to learn self induction & Mutual inductance.	12Hours
Module-3	 Electrical Machines: Construction, working principle & Application of DC generator, DC Motor, 3 phase & single phase induction motor, Alternator & Special Motors (Stepper & BLDC) Experiential learning:- Single phase transformer construction and working: Definition of Transformer, construction of Winding of shell type Transformer. 	8 Hours

Total	•	40 Hours
	Experiential learning:- Making of LED bulb and Determination of Ratings of Different types of Lamps. (Tungsten, Mucury Vapour, CFL & LED)	
Module-4	 Electrical Safety: Safety Procedure for working on electrical mains & Apparatus, Electrical hazard, its preventions & Protections, Fire preventions & protection for electrical installations. First aid in electrical Injuries. Artificial respiration & chest compression for accidents victims. Importance of IE rules and Electrical License rules. Different Illumination, Batteries and their applications. 	10 Hours
	Design of Electric Circuit using Circuit Breaker & Fuse for domestic house wiring.	
	Type of earthing & Different types of Domestic Wiring. Experiential learning:-	
	Electrical Installations & wiring: Layout of LT switchgear, Switch fuse unit (SFU), MCB, ELCB, MCCB.	

Text Books:

T1.D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.

T2. Principles of Electrical Safety, Peter E. Sutherland, Wiley-IEEE Press.

Reference Books:

R1."Basic Electrical Engineering" by Mittle, V and Arvind Mittle, Tata McGraw Hil.

R2.E. Hughes, "Electrical and Electronics Technology", Pearson.

R3. Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.

R4."Basic Electrical Engineering" by C L Wadhwa, New Age pub.

R5.D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.

R6.Electrical Safety Handbook, 4th Edition Hardcover by John Cadick Mary Capelli-Schellpfeffer Dennis

Neitzel Al Winfield

Online Resources:

- 1. <u>https://onlinecourses.nptel.ac.in/noc23_ee62</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc23_ee17</u>
- 3. https://onlinecourses.nptel.ac.in/noc23_ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23_ee15
- 6. <u>https://onlinecourses.nptel.ac.in/noc22_ee90</u>
- 7. <u>https://onlinecourses.nptel.ac.in/noc22_ee93</u>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Introduce fundamentals idea & techniques about electrical engineering & to provide knowledge about DC, AC.
CO2	Analyses of different problems of electrical circuit using electrical theorems.
CO3	Understanding of magnetic circuit and solving the basic problems.
CO4	Impart conceptual analysis of electrical machineries & to familiarize the students with electrical safety equipment & domestic wiring.
CO5	Understand and implementation the earthing and wiring system.
CO6	Inculcate sound understanding of illumination scheme.

Page **19** of **66**

Туре	Code	Basic Electronics Engineering	L-T-P	Credits	Marks
ES	BTBS-T-ES-102	Dasic Electronics Engineering	3-0-0	2	100

Objectives	To expose to the field of electronics engineering, and to acquire the fundamental knowledge in the field.
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Scheme	Regular classroom lectures with use of ICT as and when required,
	sessions are planned to be interactive with focus on problem solving

Eval	uat	ion	Scl	neme
------	-----	-----	-----	------

Teacher's Assessment			Written A	ssessment	Total	
Quiz	Surprise Test(s)	Assignment(s)	Mid-Term	End-Term	Iotal	

	Introduction to Electronics and Communication Engineering: Basic Electronics components (active, passive),Signal, Spectrum, Frequency Band and Industrial application(VLSI, Microwave, RF, Telecommunication, Fiber Optics, RADAR, Signal Processing). Basic Communication Block Diagram and concept of Transmitter, Receiver and Channel. Diodes: Overview of Semiconductors. Working principle and characteristics of PN junction. Experiential Learning : Diode applications (half-wave and full- wave rectifier, clipper, clamper and zener /Avalanche Breakdown).	10 Hours
Module-2		
	Bipolar Junction Transistor :Construction, Operation of Bipolar Junction Transistor and Experiential Learning : Transistor Biasing : Fixed Bias, Voltage divider bias, Transistor as a switch, CB, CE, CC (Relationship between α , β , γ) circuit configuration Input-output characteristics, as an Amplifier.	10 Hours
	Op-Amp:The Operational Amplifier (Op-Amp): The Ideal Op-Amp Characteristics, Virtual ground concept, Inverting and non-inverting configurations, Application of Op-Amp (Summing amplifier, Integrator, Differentiator. Unit Gain Amplifier)	
Module-3	Basics of Digital Electronics : Number System, Inter conversion of Number Systems, Binary Arithmetic, Boolean Algebra, Simplification of Boolean Expressions, Demorgan's Theorem, SOP, POS, Digital logic Gates (AND, OR, NOT, NAND, NOR, EXOR, EX-NOR); Realization of Basic logic gates using universal gates, Combinational Circuits-Half-Adder, Full-Adder, Half- Subtractor, Full-Subtractor. Basic concept of Sequential Circuits, latch and flip-	12 Hours

	Smoke Sensor	
	of Sensors: Temperature sensor, Moisture Sensor, Rain Sensor, LDR, IR,	
	Introduction to Sensors and their Applications : Introduction to different types	0 110015
	Introduction to chip designing and manufacturing.	8 Hours
	Experiential Learning :	
Moudie 4	microcontroller.	
Module-4	input, output, ALU, CU, Registers ,Difference between microprocessor and	
	Introduction to Microprocessors and Microcontrollers: Basic block diagram:	

Text Books:

T1. Electronic Devices and Circuit Theory (Ninth Edition), Robert L. Boylested and Louis Nashelsky, Pearson Education, 482 FIE, Patparganj, Delhi – 110 092.

T2.Digital Design, 5th Edition M. Morris Mano and Michael D Ciletti Pearson

T3.B. Ram, Fundamentals of Microprocessors and Microcomputers, Dhanpat Rai Publications **Reference Books**:

R1 Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.

R2.E. Hughes, "Electrical and Electronics Technology", Pearson.

R3.Microelectronic Circuits, 7th Edition Adel S Sedra and Kenneth C Smith Oxford University Press

R4.Fundamentals of Digital Circuits, 4th Edition A Anand Kumar PHI

R5. Integrated Electronics, 2nd Edition Jacob Millman and Christos Halkias Tata McGraw Hills

R6. A course in Electrical and Electronic Measurements and Instrumentation Author: AK Sawhney Publisher : Dhanpat Rai & Co. (P) Limited

Online Resources:

- 1. <u>https://onlinecourses.nptel.ac.in/noc23_ee62</u>
- 2. <u>https://onlinecourses.nptel.ac.in/noc23_ee17</u>
- 3. https://onlinecourses.nptel.ac.in/noc23_ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23_ee15
- 6. <u>https://onlinecourses.nptel.ac.in/noc22_ee90</u>
- 7. https://onlinecourses.nptel.ac.in/noc22_ee93

CO1	To introduce fundamentals idea & techniques about electrical engineering & to provide
CO2	To impart conceptual analysis of electrical machineries & to familiarize the students with
02	electrical safety equipment & domestic wiring.
CO3	To inculcate sound understanding of illumination scheme.
CO4	To give knowledge about basic electronic components , industrial applications and
CO5	To understand basic operation and applications of Diode, BJT and Op-Amp.
CO6	To Study basic digital concepts, sensors, microprocessors and microcontrollers

Page **21** of **66**

Туре	Code		L-T-P	Credits	Marks
ES	BTES-T-ES-103	Basic Programming Skills	4-1-0	3	150

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
0 00	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours
Module-1	Algorithm, Representation of Algorithm: Flowchart/Pseudo-code with examples. From algorithms to programs; C Program source code, C Program structure, basic syntax, data types, variables, constants, storage class, syntax and logical errors in compilation, object and executable code, Arithmetic expressions, operators and precedence.	10 Hours
Module-2	Decision making: Conditional Branching, if statement, if else statement, nested if else statement, switch, nested switch statements, Iteration and loops, break, continue, Decision making Application in solving real life problems.	8 Hours
Module-3	Functions, Parameter passing in functions, call by value, idea of call by reference, recursion with examples of Finding Factorial, Fibonacci series, local and global variables, static variables. Experiential Learning: Arduino based Programming: Overview of the Arduino UNO Components, Analog and Digital Read, Controlling output	8 Hours
Module-4	Arrays: Arrays (1-D, 2-D), initialization, Accessing Array Elements, Matrix applications, passing arrays to functions, Character arrays and Strings, Pointers, Pointer arithmetic, dynamic memory allocation, pointer to array and array of pointers, Linear Search, Bubble Sort	8 Hours
Module-5	Structures, Array of structures, union, structure vs union, passing structure to function, File handling: ASCII and binary Files.	6 Hours
Total		40 Hours

Text Books:

1. E. Balagurusamy, Programming in ANSI C, 8th Edition, Tata McGraw Hill, 2019

2. Herbert Schild, C: The Complete Reference, Tata McGraw Hill

Reference Books:

1. A.K.Rath and A. K. Jagadev, "Data Structures and Program Design using C", 2nd Edition, Scitech Publications, 2011

- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication Pvt. Ltd
- 3. Rajaraman, V., Computer Programming in C, PHI Publications
- 4. Simon Monk, Programming Arduino: Getting Started with Sketches, 2nd Edition, McGraw Hill, 2016
- 5. Yashavant Kanetkar, Let Us C, 17th Edition, BPB Publications New Delhi, 2019

Course Outcomes: At the end of this course, the students will be able to:

CO1	To formulate simple algorithms for problem solving and translate the algorithms to programs.
CO2	To test and execute the programs and correct syntax and logical errors.
CO3	To implement different conditional branching and loops for problem solving.
CO4	To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
CO5	To use arrays, pointers and structures to formulate algorithms and programs.
CO6	To apply programming to solve searching and sorting problems.

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-104	Basic Mechanical Engineering	3-0-0	2	150
	·				<u>. </u>

Objectives	To expose to the field of Mechanical Engineering, and to acquire the fundamental knowledge in the said field.	
Pre-Requisites	Pre-Requisites Knowledge of Physics, Mathematics and computer programming in Secondary	
Teaching Scheme	eaching Scheme Regular classroom lectures with use of ICT as and when required, sessions are	
	planned to be interactive with focus on group task, project planning and video	

Module-#	Topics	Hours
Module-1	 Introduction to Engineering Materials and Mechanical Measurement: Engineering Materials: Classification of engineering material, Properties-Physical, Chemical & Mechanical, Composition of Cast iron and Carbon steels, Alloy steels their applications, Composites, Plastics and ceramics. Concepts on Metallurgy. Smart materials. Mechanical Measurement: Concept of measurements, errors in measurement, measurement of Temperature, Pressure, Velocity, and Flow. (Working principle only.) Experiential learning Preparation of Composite material 	8 Hours
Module-2	 Introduction to Manufacturing Processes History of industrial revolution, introduction to Casting: Sand casting, Die casting, investment casting; centrifugal casting; Metal joining: Soldering, Brazing and Welding, Metal forming: bulk metal forming (rolling, forging, extrusion, wire/bar drawing), sheet metal forming(bending, deep drawing, sheering), Additive Manufacturing: Introduction to 3d printing: working principle, physics of process; process modelling: computer aided process planning for 3d printing; classification: Extrusion(Detail study of Fused Deposited Modelling with video demonstration of working principle of inhouse 3d printer), granular, laminated, light polymerized ; Related technologies. Subtractive Manufacturing (working principle, details of machine tools and application only): Introduction, Conventional Machining Processes: cutting, turning, milling, drilling, grinding, and boring; Nonconventional Machining Processes: CNC Machining, EDM, ECM, Laser Cutting, Wood router(Detail study and video demonstration of working principle), water jetting. Experiential learning Wood carving of Art CAM using wood router Small project using Metal joining process(Similar and Dis-similar) Casting of different components 	12 Hours

Page **24** of **66**

	Total	40 Hours
Module-4	Introduction power transmission: Power transmission devices: Belt, Rope, Gear & Gear drives. Coupling, clutch, brakes. (Working principle only), Mechanical Advantage, Velocity ratio. Experiential learning 6.Belt drive, muff coupling	8 Hours
	application, Archimedes Principle, Bernoulli's theorem. Hydraulic machines: turbines, pumps, their types. CO4: Get knowledge of fluid properties and explain working principle of Hydraulic Machines Experiential learning 5.Hydraulic system design and manufacturing using Pascal's Law	13 Hour
Module-3	Fundamentals of Thermodynamics and Fluid Mechanics: Basics of Thermodynamics, Steam formation& its properties. Evaporation and Condensation, Cryogenics: Dry ice Vs Liquid Nitrogen. Aircraft engines and its classifications, Fuels, Rockets. Application of Thermodynamics : Steam power plant, I.C Engine, Refrigerators and Air- Conditioners (Brief description of different components with Schematic diagram only.) Fluid Properties and their Applications: Fluid properties, Pascal's Law its	12 Hours

Text Books:

T1. Basic Mechanical Engineering by Pravin Kumar, Pearson.

- T2. Text book of Elements of Mechanical Engineering, S T Murthy, Universities press.
- T3. Cengal, Y., Boles, "Thermodynamics", Mc-Graw Hill, 2001.

ReferenceBooks:

- R1. Basic Mechanical Engineering by Basant Agrawal, C M Agrawal, Willey .
- R2. Elements of Mechanical Engineering by J K Kittur and G D Gokak, Willey.
- R3. Engineering Thermodynamics by P. Chattopadhaya, Oxford University Press.
- R4. Basic Mechanical Engineering by .D. Mishra, P.K Parida, S.S.Sahoo, India Tech Publishing.
- R5. Engineering Materials, S C Rangwala, Charotar Publishing House .

Course Outcome

At the end of the course the student will be able to:

CO1	Discuss the Properties of Common Engineering Materials and measuring equipment	
CO2	CO2 Describe the conventional and advanced Manufacturing process.	
CO3	Explain the Working Principle of IC engines and Refrigeration and Air conditioning.	
CO4	Get knowledge of fluid properties and explain working principle of Hydraulic Machines	
CO5	Explain different power transmission systems.	

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-105	Basic Civil Engineering	3-0-0	2	150

Objectives	To expose to the field of Civil Engineering, and to acquire the fundamental knowledge in the said field.
Pre-Requisites	Knowledge of Physics, Mathematics and computer programming in Secondary Education
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on group task, project planning and video demonstration .

Module-#	Topics	Hours
Module-I	Introduction to Construction materials Basics of Civil Engineering & Broad disciplines of Civil Engineering Building components and Materials –Cement, Concrete, Steel,. Concept of smart building, Tiles for flooring, Different Types of Doors and windows, Paints. New and smart Materials – flyash, new-age concrete, recycling of materials.	10 Hours
Module-II	Field Survey : Scale, plan, map, principles of survey, Linear measurements, Ranging, Compass Survey, Bearing of a line, Levelling, Introduction to Modern Survey Instruments (EDM and Total Station), GIS and GPS (Introduction only). Transportation Railway, Airport, Types of Bridges, concept of Tunnels and Metro rail (underground and overhead engineering - Different modes of transport, classification of road, , Introduction to), Basics of Port and Harbor, Breakwater – Concept of inland waterways.	10 Hours
Module-III	Fundamentals of Soil Mechanics, Hydrology Fundamentals of soil classification, properties, foundation (deep and shallow) and types. Fundamentals of Water Resource engineering- sources and Introduction to hydraulic structures like canals, siphons, weirs, dams etc.	10Hours

Water supply (Experiential Learning)Introduction, sources of water, advantages and disadvantages of water water supply system and its components.Types of flow , Pumps- its types, centrifugal pump its principle, con and its limitations. Pressure Regulator, Working of Pressure Regulator Sensors:Introduction, Types of sensor, uses and use of relay in tanks. Solenoid valve-Solenoid valveSolenoid valve types, Solenoid valves working principle, Advanced p Technologies, Plumbing in Building, Plumbing system, Purpose of p system, Plumbing safety tools, Plumbing tools, Safety during work, Fit fixtures in domestic building, Plumbing business tools, Valves, Types o Waste Water Treatment Sewerage, Characteristics of sewerage, effect of sewerage on ecosyster water treatment, Importance of waste water, its treatment process. S system, types of sewerage system	mbing mbing ig and oints waste
--	--

TextBooks:

- T1. Basic Civil Engineering, S.Gopi, Pearson.
- T2. Basics of Civil Engineering, M.S. Palanichamy, McGraw Hill.

ReferenceBooks:

- R1. Surveying Vol -1, RAgor, Khanna Publisher.
- R2. Water supply ana Waste water engineering, S.K. Garg.
- R3. Introduction to Bridge Engineering, D. Jhonson Victor.
- R4. Engineering Materials, S C Rangwala, Charotar Publishing House.

Course Outcomes: At the end of this course, the students will be able to:

CO 1	Identify the different properties of building materials	
CO 2	Understanding the different modes of transportation	
CO 3	Study of engineering properties of soil	
CO 4	Analyze of water supply system by sensors and solenoids	
CO 5	Evaluating different types of pumps	
CO 6	Explore the uses of different instruments used in civil engineering work	

Experiential Learning :

- 1. Transparent centrifugal pump.
- 2. Aqueduct, Syphon aqueduct, Super passage, canal syphon, level crossing
- 3. Practical working model of port

- Piping connection.
 Piping network Connection
 Solenoid Valve
- 7. Study of different water sensors.
- 8. Hydraulic bridge
 9. Fly-ash Bricks.
- 10. New age concrete.- ferroconcrete, roller compacted concrete, FRC

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-T-HS-111	English for Engineers –I	2-0-0	1	100

Objectives	1. To develop the understanding of communication in different context.2.To identify the basics of professional Writing3. To acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.	
Pre-Requisites NONE		
Teaching Pedagogy	Regular classroom lectures with use of the interaction, experiential, activity oriented.	

Module-#	Topics	Hours				
	Introduction to Communication					
	 Process and Factors of Communication History & Significance of Communication Communication loop Factors Responsible (Sender, Receiver, Channel, Code, Feedback etc.) Verbal and Non-verbal communication 	06 hours				
Module-1	2.1 Verbal Communication					
Module-1	2.3. Non-Verbal Communication (Body language, Paralanguage)	+1(EL)				
	3. Barriers to Communication3.1. Barriers and Filters	=7 hour				
	3.2. Types of Barriers (Physical, Psychological, , Cultural Barrier etc.3.3. Tips to Overcome Barriers					
	Experiential Learning: Non-verbal communication					

	Professional Writing	
Module-2	 Letters &E-mail writing Block format, 	2+3+3 08 Hours
Module-3	Literature Appreciation Name of the Lessons: 1.A.P.J Abdul Kalam from Wings of Fire, A.P.J Abdul Kalam with Arun Tiwari 2. "Spoken English & Broken English" by Bernard Shaw 3. Life Doesn't Frighten Me Poem by Maya Angelou 4. On Superstitions by A.G.Gardiner	8 Hours

Reference Books:

R1. An Introduction to Professional English and Soft Skills - Das et al.- Foundation Books

- R2. Understanding Human Communication by Ronald B. Adler
- R3. Technical Communication, Fourth Edition-Meenakshi Raman & Sangeeta Sharma
- R4. The Definitive Book of Body Language by Allan Pease
- R5. Silent messages by Albert Mehrabian
- R6. Advanced English Grammar by Martin Hewing
- R7. English Grammar in use- Raymond Murphy

Online Resources:

www.britishcouncil.in http://nptel.ac.in http://eltai.in

Page **30** of **66**

Course Outcomes: A	At the end of this course, the students will be able to:
--------------------	--

CO1	Learn the fundamentals of communication
CO2	Understand the basic professional writing
CO3	Evaluate Literary convention

Туре	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-101	Information Technology and Information Systems (IT & IS)	2-0-0	0	100

Objectives	To expose to the fundamental usage of Computer.
Pre-Requisites	Basic knowledge of English in Secondary Education
Teaching Scheme	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life activities.

Module	Course to be Covered	Hours			
Module 1	 Introduction Windows OS, OS Commands and operations, Introduction to MS Office MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles. Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols. 				
Module 2	MS-WORD: Mailing tab : Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus. MS-EXCEL: Create workbook, Home tab, Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	5 Hours			
Module 3	MS-EXCEL: Page Layout tab : Margin, Orientation, Paper size, Print area, Background Formulas tab : Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if) MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	5 Hours			
Module 4	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab : Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound. Internet Technology : MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	5 Hours			
Module 5	GRAMMERLY: Creating and uploading documents, Editing text Using GrammarlyGO, Formatting text, Checking your document for plagiarism. ChatGPT : Introduction, ChatGPT in general life, Uses and Applications of ChatGBlog Topics and Keyword Research, Assist in Generating Copy for a Web				

Page **32** of **66**

Proofreading and Editing, Creating WordPress Plugins, Writing and Debugging Code

TOTAL

24 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	To give basic fundamental concept about computer system.
CO2	To get familiar with MS Windows OS.
CO3	To get hands on expertise in MS Word.
CO4	Able to solve mathematical problems systematically using MS excel.
CO5	Able to design professional presentation using MS PowerPoint.
CO6	Able to manage the information in computer system using internet technology.

EXPERIMENTS:

Experiment No.	Course to be Covered	Hours		
Experiment-1	Introduction Windows OS, OS Commands and operations, Introduction to MS Office	2 Hours		
Experiment-2	MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles.			
Experiment-3	MS-WORD: Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols.	2 Hours		
Experiment-4	MS-WORD: Mailing tab : Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus.	2 Hours		
Experiment-5	MS-EXCEL: Create workbook, Home tab, Insert tab Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	2 Hours		
Experiment-6	MS-EXCEL: Page Layout tab : Margin, Orientation, Paper size, Print area, Background	2 Hours		
Experiment-7	MS-EXCEL: Formulas tab : Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if)	2 Hours		
Experiment-8	MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	2 Hours		
Experiment-9	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab : Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound.	2 Hours		
Experiment-10	Internet Technology : MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	2 Hours		

Experiment-11	GRAMMERLY: Creating and uploading documents, Editing text Using	2 Hours			
	GrammarlyGO, Formatting text, Checking your document for plagiarism.				
Experiment-12	ChatGPT : Introduction, ChatGPT in general life, Uses and Applications of	2 Hours			
	ChatGPT, Blog Topics and Keyword Research, Assist in Generating Copy				
	for a Website Proofreading and Editing, Creating WordPress Plugins,	,			
	Writing and Debugging Code				
	TOTAL	24 Hours			

Reading Material (s)

- 1. IT & IS Lab Manual, Department of CSE, GIFT, Bhubaneswar
- 2. Microsoft Office 2010 Introductory BY Gary B. Shelly, Misty E. Vermaat.

Туре	Code			L-T-P	Credits	Marks
MC	BTMC-T-MC	-102	2 Constitution of India	2-0-0	0	100
Objectives The objective of this subject is to provide understand Indian Constitution and various organs created by the functions. The course acquaints students with the objectives and institutions, and their actual working of the structures and institutions.			the constitution	ution inclu	ding their	
Pre-Requisites B		Basic knowledge of Indian history, overall idea on India's political system.				•
		-	ar classroom lectures with use of ICT as and when to be interactive.	nen require	d and each	session is

Evaluation Scheme

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Historical perspective of the constitution of India. Preamble of Indian constitution, Salient features of Indian constitution, Fundamental rights, Fundamental Duties and its legal status, Directive principles of state policy-its importance and Implementation.	
Module-2	Federal structure and distribution of legislative and financial powers between the Union and the States, The Union legislature - The Parliament - The Lok Sabha and the Rajya Sabha, Composition, powers and functions, Union executive, President of India (with powers and functions), Vice- President, The Council of Ministers and the Prime Minister - Powers and functions.	6 Hours
Module-3	State Government, The State Legislature - composition, powers and functions, State executive, Governor (with powers and functions).	5 Hours
Module-4	Amendment of the Constitutional Powers and Procedure, Emergency Provisions: National Emergency, President Rule, Financial Emergency. Scheme of the Fundamental Right to Equality Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right to Life and Personal Liberty under Article 21. Local Self Government - Constitutional Scheme in India.	5 Hours

Module-5	The Indian Judicial System - the Supreme Court and the High Court's composition, jurisdiction and functions, Judicial review, Judicial activism, independence of Judiciary in India.	
Total		28 Hours

Text Books:

T1. D. D. Basu, Introduction of Constitution of India, 22nd Edition, LexisNexis, 2015.

T2. K. Subas, An Introduction to India's Constitution and Constitutional Law, 5th Edition, National Book Trust India, 2011.

Course Outcomes:	At the end of this course, the students will be able to:
-------------------------	--

CO1	Provide basic information about Indian constitution.
CO2	Analyze the legalities and related issues of drafting, adoption and enforcement of the Indian
	Constitution as a fundamental law of the nation and the provisions and privileges of Indian
	Citizenship.
CO3	Understand and judiciously use the fundamental rights and privileges envisaged in the
	constitution.
CO4	Analyze the major dimensions of Indian Political System and to contribute in protecting and
	preserving the sovereignty and integrity of India.
CO5	Know the successful functioning of democracy in India
CO6	Understand their obligations, responsibilities, privileges & rights, duties and the role that they
	have to play in deciding the Administrative Machinery of the country.

Туре	Code	Mathematics - II	L-T-P	Credits	Marks
BS	BTBS-T-BS-211	Mathematics - 11	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and	
	concepts of numerical methods to solve the system of linear equations & ordinary	
	differential equations, interpolation, and applications of vector integral calculus.	
Pre-Requisites	A sound knowledge of linear algebra, basic calculus, and matrix algebra.	
Teaching Scheme Regular classroom lectures with use of ICT as and when required, session		
	planned to be interactive with focus on problem solving activities.	

Module	Topics	Hours	
	Root finding of algebraic and transcendental equations: Bisection method, Secant		
Module-1	and Regula-falsi methods, Newton's method, Fixed point iteration method, Rate of		
	convergence. Experiential learning- Finding the root of transcendental equations		
	using MATLAB.		
	Interpolation: Lagrange interpolation, Newton's divided difference interpolation,		
Module-2	Newton's forward and backward interpolation. Numerical differentiation and	14 Hours	
	Integration: Newton-Cotes quadrature formula, Trapezoidal rule, Simpson's rule,		
	2-point and 3-point Gauss Legendre rule. Euler method, Modified Euler method.		
	Experiential learning- Evaluation of numerical integrals and solution of initial		
	value problems.		
	Beta and Gamma functions, Vector Integral Calculus: Line Integrals,		
Module-3	Independence of Path, Double Integrals, Green's theorem with applications.		
	Series Completion, Coding-Decoding, Data Sufficiency, Basic concepts on		
Module-4	Probability and statistics.		
	Total	45 Hours	

Text Books:

T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.

- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, A Modern Approach to Verbal & Non-verbal reasoning, S. Chand publication.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.
- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. B. P. Acharya, R. N. Das, A Course on Numerical Analysis, Kalyani Publishers
- R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley

Page **37** of **66**

Online Resources:

- 1. https://nptel.ac.in/courses/127106019
- 2. https://nptel.ac.in/courses/111102111
- 3. https://nptel.ac.in/courses/111105122
- 4. https://nptel.ac.in/courses/111105121
- 5. https://nptel.ac.in/courses/111105134

Course Outcomes: At the end of this course, the students will be able to:

CO1	Apply the numerical methods to find the approximate solutions of algebraic and transcendental equations.
CO2	Evaluate the real time problems using MATLAB.
CO3	Solve the numerical solution of differential equations and use of various techniques for evaluating the integrals.
CO4	Calculate line integrals in two dimensions for differential forms and also calculate double integrals in Cartesian and polar coordinates over the domains.
CO5	Know the basic concepts of verbal, non-verbal reasoning and logical ability for better employability.
CO6	Understand the basic concepts of mathematical theory of probability.

Туре	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTES-T-ES-203		4-1-0	3	150

Objectives	Exploring basic data structures concept used in Industries	
Pre-Requisites	Knowledge of Mathematics in Secondary Education and basic Programming concept.	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.	

Module-#	Topics	
Module-1	Introduction: Basic Terminologies: Algorithm Analysis: Mathematical Background, Model, Analyze, Running Time Calculations, Asymptotic Notations, classification of data structure. Basic data st ructure:1d-Array and 2d-Array Data Structure Operations: insertion, deletion, traversal Sparse matrix, address calculation of Array, ADT(Abstract Data type),DMA(Dynamic memory allocation),pointer, Self- referential structure. A comparison between DMA and SMA. De-allocation Strategy, Buddy System, Compaction.	
Module-2	Stacks and Queues: ADT Stack array representation and its operations: Algorithms Applications of Stacks: Expression Conversion and evaluation of expression and corresponding algorithms, Experiential Learning: application of stack.Types of Queue: Simple Queue, Circular Queue, Priority Queue ADT queue,; Array representation and Operations on each types of Queues: Algorithms and their analysis, application of queue.(Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm) Priority Queues.	
Module-3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.	
Module-4	Sorting and searching: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Experiential Learning: Insertion Sort, Merge Sort, Quick Sort, Heap Sort, Radix sort; Performance and Comparison among all the methods, Searching: Experiential Learning: Linear search, Binary search and time complexity and space complexity analysis, Hashing: Hash function and technics of	

Total		40 Hours
	Shortest path algorithm: Dijkstra's algorithm, topological sorting.	
	representation), Graph search and traversal algorithms and complexity analysis, classification of graph Minimum spanning tree (Kruskal and prims algorithm),	
	Graph: Basic Terminologies and Representations (Adjacency matrix and linked list	
	Applications of all trees.	
	Tree: definitions, algorithms and analysis, Red black trees: definition and operation,	
Module-5	their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+	
	Search Tree, Tree Traversing, AVL Tree; Tree operations on each of the trees and	6 Hours
	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Binary	

Text Books:

- T1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press
- T2. Data Structures with C (Schaum's Outline Series), Seymour Lipschutz, TMH

Reference Books:

- R1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning
- R2. Data Structures And Algorithms A.V.Aho, J. E. Hopcroft, and J. D. Ullman, I, Pearson Education, First Edition Reprint 2003R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R3. How to solve it by Computer, 2nd Impression by R. G. Dormey, Pearson Education
- R4. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concept of Dynamic memory management, data types, algorithms, Big O
	notation.
CO2	Understand basic data structures such as arrays, linked lists, stacks and queues.
CO3	Understand the implementation and application of linear data structure
CO4	Understanding of tree traversal techniques and their application
CO5	Understand the graph traversal and its application In real life.
CO6	Understand Algorithm for different sorting, searching techniques and their running
	complexity, and basic concept of hash function

Туре	Code	English for Engineers-II	L-T-P	Credits	Marks
HS	BTBS-T-HS-211	English for Englicers-II	2-0-0	1	100

	To understand the nuances professional Communication
Objectives	To prepare students for real world interaction
	To enhance the soft skill competency of learners
Pre-Requisites	To have a common understanding of concepts of communication.
Teaching Pedagogy	Real world-based teaching learning pedagogy.

Module-#	Topics	Hours
Module-1	 Introduction to Professional Communication Patterns of Communication Formal &Semi Formal: Vertical, Horizontal, Diagonal communication	3+1(EL) 4Hours
Module-2	 Employment Communication & Soft skill 1.1. Cover Letter and Resume' Building, Types of Resumes: Traditional & Electronics 1.2. Presenting to the audience :4ps 1.3. Cross Cultural Competency 1.4. Group Discussion, Types of GD, Do's and don'ts 1.5. Interview, Types of Interviews, How to Prepare for an Interview Experiential Learning: Cross Cultural Competency 	2+2+2+2+2 =10+4(EL) Hours

Module-3	Literature Appreciations Steve Jobs by Isaacson Walter An Interview with Microsoft CEO: Satya Nadella by Sudipta Sengupta, TNN, March 10,2023 	6 Hours+ 1(EL)=7Hr
	Experiential Learning: Book Review	

Reference Books:

- R1. Corporate Soft Skills-Sarvesh Gulati- Rupa Publications
- R2. Bridging the Soft Skills Gap- Brucetulgan
- R3. Excellence in Business Communication John V. Thill, Courtland Bovee
- R4. Simply Said: Communicating Better at Work and Beyond by Jay Sullivan
- R5. Steve Jobs by Isaacson Walter

Online Resources:

https://communicationmgmt.usc.edu https://nptel.ac.in www.britishcouncil.org https://eltai.ac.in https://in.coursera.

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the various forms and Channels of communication in a corporate world
CO2	Develop skills to meet the placement challenges
CO3	Implement different forms of writing for professional needs
CO4	Acquiring skills set to sustain the professional careers.

Туре	Code	Elements of Engineering	L-T-P	Credits	Marks
BS	BTBS-P-BS-102	Physics Laboratory	0-0-2	1	100

Objectives The laboratory should help students to understand the role of direct physics and to distinguish between inferences based on theory and on the experiments.	
Pre-Requisites	Knowledge of Physics in Secondary Education
Teaching PedagogyRegular practical classes with use of virtual lab as and when required, set are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours		
Experiment-1	Determination of acceleration due to gravity (g) by bar pendulum.	2 Hours		
Experiment-2	Determination of rigidity modulus by using Barton's apparatus.	2 Hours		
Experiment-3	Determination of surface tension of a given liquid by capillary rise method.	2 Hours		
Experiment-4	Determination of wavelength of an unknown monochromatic source of light using Newton's ring apparatus.	2 Hours		
Experiment-5	Plotting of V~I characteristics of PN junction diode.	2 Hours		
Experiment-6	Determination of Young's modulus by using Searle's apparatus	2 Hours		
Experiment-7	Plotting of input and output characteristics of BJT (Bipolar junction	2 Hours		
Experiment-8	Determination of grating element of a plane diffraction grating.	2 Hours		
Experiment-9	Determination of co-efficient of thermal conductivity of a bad conductor by Lee's disc method.	2 Hours		
Experiment-10	Verification of laws of vibrations in a stretched string using Sono metre.	2 Hours		
	BEYOND SYLLABUS	2 Hours		
Experiment-11	To find out the resistance of unknown wire by using Meter bridge.	2 Hours		
Total		22 Hours		

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the laws to various process and real system.
CO2	Study basics of semiconductor & devices and their applications in different areas.
CO3	Distinguish the importance of different properties of material.

Page **43** of **66**

CO4	Design new instruments with practical knowledge.
CO5	Analyze, interpret and summarize the experimental results and compare with theoretical
CO6	Troubleshoot effectively in laboratory settings.

Indicative Projects

- 1. To make a periscope to understand the laws of reflection.
- 2. To make an electromagnet.
- 3. To make a line following Robot.
- 4. To make a portable Mobile charger.
- 5. To make a Rain Alarm /soil moisture Detector.
- 6. To make an Automatic street light.
- 7. To make a proto type solar panel.
- 8. To make a gas leakage detector.
- 9. To make a temperature sensor.
- 10. To build an earthquake alarm.
- 11. To make a coin cell by using super capacitor material.

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-P-BS-103	Applied Chemistry Laboratory	0-0-2	1	100

ObjectivesThe laboratory will help the students on the volumetric analysis, calculations is mass- volume relation etc.ObjectivesThe students will get knowledge on the synthesis of different medicines, preparation of different equipment's.	
Pre-Requisites Knowledge of chemistry in Secondary Education.	
Teaching PedagogyRegular practical classes with use of virtual lab as and when require are planned to be interactive with focus on problem solving activities	

	Detaned Synabus	
Module-#	Topics	Hours
Experiment-1 Standardization of KMnO4 by using sodium oxalate. Determination of Fe2 ⁺ ion in a double salt.		2 Hours
Experiment-2	Preparation of Aspirin	2 Hours
Experiment-3	To determine Dissolved oxygen in a given sample of water	2 Hours
Experiment-4	Determine the amount of Sodium Hydroxide and Sodium carbonate in the given solution using Standard acid	2 Hours
Experiment-5	Estimation of Ca ²⁺ ion in a sample of limestone	2 Hours
Experiment-6	Determination of partition coefficient of I_2 between benzene and water.	2 Hours
Experiment-7 Determination of flash and fire point of an oil by Pensky Martine's apparatus.		2 Hours
Experiment-8	Determination of viscosity of lubricating oil by Redwood viscometer.	2 Hours
Experiment-9	Determination of available chlorine in a sample of bleaching powder	2 Hours
Experiment-10	Determination of TH value of water by EDTA method.	2 Hours
	BEYOND SYLLABUS	
Experiment-11	Preparation of soap and detergent.	2 Hours
	Total	22 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Acquire knowledge on the basic volumetric analysis.
CO2	Classify various fuels based on combustion parameters and understand the working
	Principle based on their properties.
CO3	Know the importance of analytical techniques, instrumentation and applications
CO4	Impart knowledge on of water quality parameters and treatment of water.
CO5	Acquire Knowledge about synthesis and preparation of drugs, soap etc.

Page **45** of **66**

Indicative Projects

- 1. Preparation Detergent Powder From Paddy Husk
- 2. Quantity of Presence of Casein in Different Samples of Milk
- 3. Preparation of Organic Dye.
- 4. Preparation of Toilet Soaps
- 5. Presence of Oxalate Ions in Guava Fruit and Different Stages of Ripening.
- 6. Sterilization of Water Using Bleaching Powder.
- 7. Preparation of ash brick.
- 8. Preparation of Gelatin.
- 9. Preparation of Paracetamol.
- 10. Preparation of Ink.
- 11. Effect of Potassium Bisulphate as a Food Preservative.

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-101	Basic Electrical Engineering Laboratory	0-0-2	1	100

Objectives	To train the students in conducting load tests on electrical circuit and equipment's To gain practical experience in characterizing electrical machinery.
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Study of Different Electrical measuring Instruments and other electrical equipment	2 Hours
Experiment-2	Verification of thevenin's theorem using DC circuits.	2 Hours
Experiment-3	Verification of Superposition theorem theorem using DC circuits.	2 Hours
Experiment-4	Verification of Maximum power transfer theorem using DC circuits.	2 Hours
Experiment-5	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	2 Hours
Experiment-6	Verification and calculation of Resonance frequency in series R-L-C circuit.	2 Hours
Experiment-7	Connection and Demonstration of Domestic Wiring System	2 Hours
Experiment-8	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers	2 Hours
Experiment-9	Power and phase measurements in three phase system by two wattmeter method	2 Hours
Experiment-10	OC and SC test on single phase transformer	2 Hours
	BEYOND SYLLABUS	
Experiment-11	Verification of Ohm's Law	2 Hours
Experiment-12	Verification of B-H curve	2 Hours
Total	•	24 Hours

Page **47** of **66**

1. <u>http://vlabs.iitkgp.ernet.in/be/</u>

2. <u>http://sl-coep.vlabs.ac.in/</u>

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify different Electrical Instruments and measure different parameters.
CO2	Study connection and demonstration of DC generators, motors and wiring systems.
CO3	Study design and connection of Different Lamps
CO4	Identify active and passive electronic components and handle measuring instruments like
CO5	Design different circuits using diode, BJT and opamps.
CO6	Design and analyze logic gates

Indicative Projects

SL. NO.	NAME OF THE PROJECT
1	Mobile Charger
2	Extension Board
3	Multiple USB Port
4	Brushless DC Motor Driver
5	Small Transformers Upto 7V.
6	Small Model Of Bio-Gas Plant
7	Temperature Control 12v DC Fan
8	Making Of Led Bulbs.

Туре	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-102	Basic Electronics Engineering Laboratory	0-0-2	1	100

Objectives	To train the students in conducting load tests on electrical machines To gain practical experience in characterizing electronic devices To train the students to use CRO and DSO for measurements
Pre- Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Scheme	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Study of Different Electrical measuring Instruments and other electrical equipment	2 Hours
Experiment-2	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	2 Hours
Experiment-3	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers.	2 Hours
Experiment-4	Connection and Demonstration of Domestic Wiring System.	2 Hours
Experiment-5	Model Study & Connection of Different Lamps (Mercury Vapor Lamp, Tungsten, LED Bulbs, Fluorescents, CFL)	2 Hours
Experiment-6	A:- Identification of electronic components, devices and Basic Sensors, B:- Study and use of CRO/ DSO, Function generator to view and measure different wave forms.	2 Hours
Experiment-7	Design of Simple Diode Circuit and Study of V-I characteristics of semiconductor Diode & calculation of DC and AC Resistance	2 Hours
-	Design of Half – wave rectifier and full wave rectifier circuits, and calculation of efficiency	2 Hours
-	Design of inverting and non- inverting amplifiers using Op-Amp to view and measure waveforms	2 Hours
Experiment-10	Study and truth table verification of logic gates.	2 Hours
	BEYOND SYLLABUS	
	Design of simple BJT Bias circuit to draw VI characteristics (input & output) of a NPN transistor (in CE configuration)	2 Hours
Experiment-12	Verification of Ohm's Law	2 Hours
	Total	24 Hours
		Page 49 of 66

Online Resources:

- <u>http://vlabs.iitkgp.ernet.in/be/</u>
 <u>http://sl-coep.vlabs.ac.in/</u>

2

3.	
CO1	To identify different Electrical Instruments and measure different parameters.
CO2	To study connection and demonstration of DC generators, motors and wiring systems.
CO3	To study design and connection of Different Lamps
CO4	To identify active and passive electronic components and handle measuring instruments like CRO and DSO.
CO5	To design different circuits using diode, BJT and opamps.
CO6	To design and analyze logic gates

Indicative Projects

SL.	NAME OF THE PROJECT
NO.	
1	Night light using LDR.
2	Automatic Fan ON/OFF using Temperature Sensor.
3	Moisture Controller using Moisture Sensor.
4	Fire Alarm using Temperature Sensor.
5	Light ON /OFF using Piezo Sensor.
6	Clap sound Operated using Sound Sensor.
7	Rain Detector
8	Power supply Circuit
9	Touch less Doorbell
10	Motion Detector using Ultrasonic Sensor

Туре	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-103	Basic Programming Skills Laboratory	0-0-4	2	100

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
0 0 0	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life problem solving activities.

Detailed Syllabus				
Module-#	Topics	Hours		
Experiment-1	Familiarity with basic UNIX/LINUX command, vi editor. Sample C Program.	2 Hours		
Experiment-2	Programs on arithmetic expressions, operators, and precedence.	2 Hours		
Experiment-3	Programs on Conditional Branching.	2 Hours		
Experiment-4	Programs on Loops.	2 Hours		
Experiment-5	Programs on single dimensional array.	2 Hours		
Experiment-6	Programs on two-dimensional array.	2 Hours		
Experiment-7	Programs on Functions.	2 Hours		
Experiment-8	Programs on Recursive Functions.	2 Hours		
Experiment-9	Programs on Pointers.	2 Hours		
Experiment-10	Programs on Dynamic Memory Allocation.	2 Hours		
Experiment-11	Programs on Structure.	2 Hours		
Experiment-12	Programs on Union.	2 Hours		
Experiment-13	Programs on File Handling.	2 Hours		
Experiment-14	Implementation of Linear search.	2 Hours		
Experiment-15	Implementation of sorting algorithm: Bubble Sort	2 Hours		
Experiment-16	Arduino Programming – Introduction to Sensors, Introduction to Microcontrollers.	2 Hours		
Experiment-17	Programing, Serial Communication	2 Hours		
Experiment-18	Arduino based Project	2 Hours		

Page **51** of **66**

Total	38 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Remember basic understanding of computer and basic concepts of running programs.	
CO2	Understand the concepts of decision making and looping for solving problems.	
CO3	Learn to concise and precise on implementing pseudo code using functions	
CO4	Illustrate the usages of array, function and pointer in programming.	
CO5	Select the user define data type structure, union and enum for problem solving.	
CO6	Develop projects using different file handling functions.	

Projects using C Programing

- 1) Unit Converter
- 2) Customer Billing System in a Shopping Mall
- 3) Banking Management System
- 4) University Grading System
- 5) Bus Ticket Reservation System
- 6) Home Automation System
- 7) Digital Wall Clock
- 8) Book Support Automation
- 9) Lab Management System
- 10) Nursery Management System

Arduino based Project

- 1) Obstacle detection using Arduino
- 2) Controlling 4 LEDs to make different patterns
- 3) Voice Activation System
- 4) Use Humidity Sensor using Arduino
- 5) Arduino Based Color Detector
- 6) Touch Dimmer Switch Circuit Using Arduino
- 7) Wireless Door Bell
- 8) Arduino Traffic Light Controller
- 9) Frequency Counter Using Arduino
- 10) Arduino 4-Digit 7-Segment LED Display
- 11) Arduino based Digital Thermometer
- 12) Arduino Light Sensor
- 13) Portable Ultrasonic Range Meter
- 14) Security Alarm System Using Arduino
- 15) Arduino Alarm Clock
- 16) Interfacing LCD with Arduino

Туре	Code	Basic Mechanical Engineering Laboratory	L-T-P	Credits	Marks
ES	BTBS-P-ES-104		0-0-2	1	100

Objectives	To train the students in conducting experiment and get acquainted with different measuring devices, gain practical experience on Refrigerator, IC engine, Hydraulic Machines, Power transmission system and Gear trains. Experience application of Bernoulli's theorem and Meta center.	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education	
Teaching Scheme	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	Validation of Bourdon tube pressure guage with U-tube Manometer	2 Hours
-	Verification of Flow measuring apparatus (Venturi meter/ orifice meter/ rota meter)	2Hours
Experiment-3	Determination of COP of Domestic refrigerator	2 Hours
-	Draw valve timing diagram of two stroke & four stroke petrol and diesel engine	2Hours
Experiment-5	Verification of Bernoulli's Theorem	2 Hours
Experiment-6	Determination of Meta centre	2 Hours
Experiment-7	Determination of mechanical efficiency of Pelton & Francis Turbine	2 Hours
Experiment-8	Comparison of efficiency of Centrifugal pump apparatus, Reciprocating	2 Hours
Experiment-9	Determination of speed ratio of Simple ,Compound & reverted Gear train	2 Hours
Experiment-10	Demonstration of power transmission system	2 Hours
Total		20 Hours

At the end of the semester students will able to

CO1	Experience different pressure and flow measuring instruments
CO2	Experience working principle of refrigerator and IC engines
CO3	Get knowledge about application of Bernoulli's Theorem and Meta centre
CO4	Get knowledge of different types of hydraulic machines
CO5	Experience different types gear trains and able to find out mechanical advantage and gear
CO6	Get idea of power transmission system

Indicative Projects (Mechanical)

- 1. Component Preparation using 3D Printing
- 2. Specimen preparation technique for Metallurgical study.
- 3. To prepare a ship model for verification of Archimedes principle.
- 4. Model of Steam power plant.
- 5. Overhead gantry crane of 3-axis movements.
- 6. Leading & Trailing brake arrangement in Drum Brake
- 7. High speed reduction in gear drive by using worm & worm wheel.
- 8. Specimen preparation and its test in UTM.
- 9. Wind Turbine Model.
- 10. Preparation hexagonal headed Bolt (Facing & Turning)
- 11. Specimen preparation and its test in Fatigue testing machine.
- 12. Water turbine Project Model
- 13. Preparation hexagonal headed Bolt (Step Turning & Thread Cutting)
- 14. Preparation of Components/names in CNC Wood Router
- 15. Bio-fuel preparation and Study.
- 16. Compound gear train using by using Spur gear.
- 17. Fast and loose pulley arrangement using Belt drive
- 18. Development of cone clutch for power transmission.
- 19. Conversion of Reciprocating to rotary motion using Crank & Connecting rod.

Туре	Code	Basic Civil Engineering Laboratory	L-T-P	Credits	Marks
ES	BTES-P-ES-102		0-0-2	1	100

Objectives	To train the students in conducting different test on engineering materials. To gain practical experience in characterizing soil and handling hydraulic machines. To train the students to use different measuring instruments.	
Pre-Requisites	Knowledge of Physics and Chemistry in Secondary Education	
0 0 0.	Regular practical classes with use of virtual labas and when required, sessions are planned to be interactive with focus on problem-solving activities.	

Module-#	Topics	Hours
Experiment-1	Water absorption test of brick.	2 Hours
Experiment-2	Compressive strength of Brick.	2 Hours
Experiment-3	Determination of Specific gravity of soil	2 Hours
Experiment-4	Sieve Analysis of Soil.	2 Hours
Experiment-5	Study of different instruments used in survey.	2 Hours
Experiment-6	Compressive strength of Concrete.	2 Hours
Experiment-7	Study of Different types of pipe fittings	2 Hours
Experiment-8	Measurement of bearing of a line.	2 Hours
Experiment-9	Study of Solenoid Valve	2 Hours
Experiment-10	Study of Sensors.	2 Hours
	BEYOND SYLLABUS	2 Hours
Total		20 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO-1	Identify the different properties of building materials
CO-2	Understanding the different modes of transportation
CO-3	Study of engineering properties of soil
CO-4	Analyze of water supply system by sensors and solenoids
CO-5	Evaluating different types of pumps
CO-6	Explore the uses of different instruments used in civil engineering work

Indicative Projects (Civil)

- 1. Intelligent transportation system. prototype
- 2. Glass fiber reinforced concrete.
- 3. pH test of drinking water in gift campus.
- 4. Preparation of building blocks.
- 5. Identification of different parts of dam prototype
- 6. Pavement layer identification prototype
- 7. Concept of suspension bridge –prototype
- 8. Construction of English bond in cement mortar.
- 9. Study of properties for the locally available Soil .
- 10. Testing of compressive strength of the local stone in Khordha.
- 11. Admixtures used in RMC visit to plant
- 12. Preparation of fly ash brick.
- 13. Seasoning of timber.
- 14. Types of timber used in construction.
- 15. Tensile strength test of steel in construction
- 16. Identification of components of a building prototype
- 17. Various field test of cement.

Туре	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-104	Engineering Graphics with Auto-CAD	0-0-3	1.5	100
		Laboratory			

Objectives	To develop the ability to produce simple Engineering Drawings based on current practice	
	and to increase the skill to read the Product, Manufacturing, and Construction drawings	
	used in Industries.	
Pre-Requisites	Basic Knowledge on simple Geometry And shape of Simple Solid's	
Teaching	Regular practical classes with use of virtual labs and when required sessions are	
Pedagogy	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	To prepare a sheet on Lines and their uses.	3Hours
Experiment-2	To prepare a sheet on Lettering, dimensioning.	3Hours
Experiment-3	To prepare a sheet on Projection of point and lines.	3Hours
Experiment-4	To prepare a sheet on Projection of planes & Solids .	3Hours
Experiment-5	To draw Lines/Planes/ solids using Auto CAD.	3Hours
Experiment-6	To prepare a sheet on section of Solid and development of surfaces.	3Hours
Experiment-7	To draw the Ortho graphics projections of solids and sectioning using Auto CAD	3Hours
Experiment-8	To Prepare a sheet on isometric projections.	3Hours
Experiment-9	To draw isometric view of solids using Auto CAD.	3Hours
Experiment-10	To prepare a sheet on Building Drawing.	3Hours
	BEYOND SYLLABUS	
Experiment-11	To draw Ortho Graphic views of standard Isometric Solids.	3 Hours
Total		33 Hours

After completing this course the students should be able to:

CO1	Understand the visual aspect of engineering drawing, scales and Orthographic Projections	
CO2	Acquire knowledge on projection of points, lines and plane surfaces and solids.	
CO3	Understand the basics of Auto CAD, Commands and Toolbar.	
CO4	Apply modern engineering tools like Auto CAD and creating working drawings on sectioning	
04	of Solids and development of surfaces.	
CO5	Able to draw Isometric view of standard Solids using Auto CAD.	
CO6	Apply the knowledge to create building drawings	

Page **57** of **66**

Indicative Projects

- 1. 2D Drawing from Simple 3D Object With given Specification.
- 2. Component Diagram of Simple Physical Sheet Metal Part, Worm Gear, Hub-Shaft.
- 3. Nut-Bolt-Washer assembly, simple Plastic component
- 4. 2D Drawing from Simple 3D Object of Agriculture component..
- 5. Drawing of simple Storage Bin/Silo.
- 6. Drip Layout Sketch.
- 7. Drawing of Rooftop Garden Planning
- 8. Drawing of switch, Led monitor.
- 9. Drawing of Plug socket, Diode & Transistor.
- 10. House Wiring Diagram For a room having 1-Lamp, 1-Fan and 1-Plug socket.
- 11. 2D drawing of Disc Antenna, Common electronics components
- 12. 2D drawing of Electronics components symbol diagram with circuit.
- 13. Drawing Of All Simple Graphic Element & Monitor stand..
- 14. Drawing monitor
- 15. 2D drawing of Keyboard and CPU.

Туре	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-105	Workshop Practice –I Laboratory	0-0-3	1.5	100

Objectives	The laboratory should help students to understand the role of different tools & its function for different operation by manually or by machine to get different job as required
Pre-Requisites	Knowledge of different geometry in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual labs and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours	
Experiment-1	ITo make a Square from the given mild steel piece3 I		
Experiment-2	To make a V-Square fit from the given mild steel piece	3 Hours	
Experiment-3	To prepare a Lap Joint with Electric Arc welding.	3 Hours	
Experiment-4	To prepare a butt Joint with V-Groove Electric Arc welding. Method.	3 Hours	
Experiment-5	To prepare butt/T-joint by gas welding	3 Hours	
Experiment-6	To prepare joint by Soldering /Brazing.	3 Hours	
Experiment-7	To prepare a job on given specimen in machine shop. (turning, threading ,knurling,milling,drilling and shaping	3 Hours	
Experiment-8	To make the Mortise &tenon –joint wood	3 Hours	
Experiment-9	To make the dovetail joint on wood.	3 Hours	
Experiment-10	To make tray from sheet metal	3 Hours	
	BEYOND SYLLABUS	3 Hours	
Experiment-11	To make funnel in sheet metal	3 Hours	
Total		33 Hours	

After completing this course the students should be able to:

CO1	Learn the safety measures, different tools and equipment used in mechanical workshop.
CO2	Understand the concept of metal joining process and its engineering application.
CO4	Improve understanding of various fitting jobs & its application.
CO4	Understand the various machining process in Machine shop.
CO5	Learn Hands on practices & Job making in Carpentry Shop.

Page **59** of **66**

CO6 Discuss the application of Sheet metal Operation.

Indicative Projects

- 1. To make Gas cylinder stand by M.S. flat
- 2. To make Refrigerator stand by wooden plank
- 3. To make Wooden table
- 4. To make Partial Parshall flume (Venturi)
- 5. To make Drop spill way(wooden)
- 6. To make Indigenous plough(wooden)
- 7. To make Tray drier(sheet metal)
- 8. To make T.W. switch board for three switches and one socket
- 9. To make Sheet metal box to conduit wiring
- 10. To make Simple open water turbine
- 11. To make Soldering rod
- 12. To make Monitor stand
- 13. To make Phone or Tab stand
- 14. To make Support IOT kit implementation in ceiling fan hanging support rod
- 15. To make multimeter board.

Туре	Code	English for Engineers –I (Laboratory)	L-T-P	Credits	Marks
BS	BTHS-P-HS-111	English for Englicers –1 (Laboratory)	0-0-2	1	100

	To develop the skills in communication.
	To evaluate the LSRW skills with efficiency.
Objectives	To distinguish the sub skills of reading comprehension for better understanding.
	To implement the process of effective writing.
Pre-Requisites	To have basic knowledge on LSRW skills
Teaching Pedagogy	Regular sessions are planned to be interactive with examples to be acquainted with different types of communication context.

SL N0	NAME OF THE ACTIVITY	HOURS
ACTIVITY 1	Ice Breaking & Self- Introduction	2 Hours
ACTIVITY 2	The Raman Effect, Reading: Task1- Task 3, Vocabulary: Task4- Task 5 (Prefixes and Suffixes)	2 Hours
ACTIVITY 3	The Raman Effect, Grammar: Identifying Common Errors in Writing. (Task 6 to Task 15)	2 Hours
ACTIVITY 4	The Raman Effect, Writing: (Task 16 to Task 29) Paragraph Writing	2 Hours
ACTIVITY 5	Ancient Architecture, Vocabulary: Task1 to Task 3 (Synonym and Antonym), Grammar: Subject-verb Agreement. (Task 4 to Task 7)	2 Hours
ACTIVITY 6	Ancient Architecture ,Writing: Task11 to Task 18 (Formal Letter an)	2 Hours
ACTIVITY 7	Sounds of English	2 Hours
ACTIVITY 8	Sounds of English	2 Hours
ACTIVITY 9	Role Play	2 Hours
ACTIVITY 10	Debate	2 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Develop the understanding of language
CO2	Discuss the rules of language for effective communication
CO3	Analyze the pronunciation of English language
CO4	Recognize different forms of formal writing

r	Туре	Code	Programming Using Data Structure	L-T-P	Credits	Marks
	ES	BTES-P-ES-203	Laboratory	0-0-4	2	100

Objectives	Exploring basic data structures such as stacks and queues
Pre-Requisites	Knowledge of Mathematics in Secondary Education and basic Programming concept.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.

Experiment-2 V (i	Write a C program to perform matrix addition and multiplication using array Write a C program to create a stack using an array and perform	2Hours
(i (i		
(1		2Hours
	i) push operation	
	ii) pop operation	
Experiment-3 V	Write a C program to create a queue and perform	2Hours
(j	i) Push	
(j	ii) Pop	
(j	iii) Traversal	
Experiment-4 V	Write a C program that converts infix expression into postfix expression	2Hours
Ū	Using Stack operations.	
Experiment-5 V	Write a C program that evaluates postfix expression using Stack operations	2Hours
Experiment-6 V	Write a C program that uses functions to perform the following operations on	2Hours
S	Single linked list:	
(i	i) Creation	
(i	(ii) Insertion	
(1	(iii) Deletion	
(i	(iv) Traversal	
Experiment-7 V	Write a C program that uses functions to perform the following operations on	2Hours
Ľ	Double linked list:	
(i	i) Creation	
(i	(ii) Insertion	
(i	(iii) Deletion	
(i	(iv) Traversal in both ways	
Experiment-8 V	Write a C program that uses functions to perform the following operations on	2Hours
В	Binary Search Tree:	
(i	i) Creation	
		Page 62 of (

	(ii) Insertion	
	(iii) Deletion	
Experiment-9	Write a C programs that use both recursive and non-recursive functions to perform the Linear search operation for a Key value in a given list of integers Write C program that use both recursive and non-recursive functions to perform the Binary search operation for a Key value in a given list of integers	2Hours
Experiment-10	Write a C program that implement Bubble Sort method to sort a given list of integers in descending order	2Hours
Experiment-11	Write a C program that implements Quick Sort method to sort a given list of integers in ascending order	2Hours
Experiment-12	Write a C program that implements Insertion method to sort a given list of integers in ascending order	2Hours
Experiment-13	Write a C program that implements merge sort method to sort a given list of integers in ascending order	2Hours
Experiment-14	Write a C program that implements heap sort method to sort a given list of integers in ascending order	2Hours
Experiment-15	Write a C program that implements selection sort method to sort a given list of integers in ascending order	2Hours

CO1	To insert and delete elements from appropriate position in an array.
CO2	To search an element and print the total time of occurrence in the array
CO3	To represent a Sparse Matrix.
CO4	To delete all occurrence of an element in an array.
CO5	Array implementation of Stack.
CO6	Array implementation of Linear Queue.

Indicative Projects Arduino based Project

- 1) Contacts directory System
- 2) Texting editor relied on Stacks
- 3) BST which follows the Memorization procedure
- 4) Search system (in Library)
- 5) Snakes and Ladders Game
- 6) Sorted_double_sentinel_list
- 7) Phone directory application using doubly-linked lists
- 8) Spatial indexing with quadtrees
- 9) Numerical representations with random access lists
- 10) Stack-based text editor
- 11) Personal Diary Management System

- 12) Tic-Tac-Toe Game
- 13) Tank Game
- 14) Travel Agency Management System
- 15) Pharmacy Management System

Туре	Code		L-T-P	Credits	Mark
BS	BTBS-P-HS-211	English for Engineers –II (Laboratory)	0-0-2	1	100

Objectives To equip the students with different forms of professional writing To acquaint them with interpersonal etiquette to face corporate challen To understand the nuances of GD-PI	
Pre-Requisites	Basic knowledge of applications of communication
Teaching Pedagogy	Application oriented, task based, need based, teaching Pedagogy

Activity No	Activity Name	Hours
Activity: 1	Blue Jeans Sub Skills of Reading: Task14- Task 15	2 Hours
Activity:2	How a Chinese Billionaire Built Her Fortune Vocabulary: Task1 to Task 3 (Technical and Computer related Terms)	2 Hours
Activity:3	How a Chinese Billionaire Built Her Fortune Writing: Task12 to Task 14(Report)	2 Hours
Activity:4	Sop practice,	2 Hours
Activity:5	Proposal Writing	2Hours
Activity:6	Oral Presentation 1	2 Hours
Activity:7	Oral Presentation 2	2 Hours
Activity:8	Group Discussion1	2 Hours
Activity:9	Group Discussion 2	2 Hours
Activity:10	Mock Interview	2 Hours
Total		20 Hours

Page **65** of **66**

CO1	Develop knowledge in interpersonal communication.
CO2	Develop skills for corporate readiness.
CO3	Implement the different forms of professional correspondence.
CO4	Apply English grammar and essentials of language skills as per present requirement.

Syllabus for B. Tech (2nd Year)

(2023-24 Admission Batch)

B. Tech. in Mechanical Engineering

(Approved by Academic Council and Board of Studies)

GIFT Autonomous, Bhubaneswar

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela) Recognized under section 2(f) of the UGC act, 1956 At- Gramadiha, Po. Gangapada, Via-Janla, Dist-Khorda, Pin code: 752054

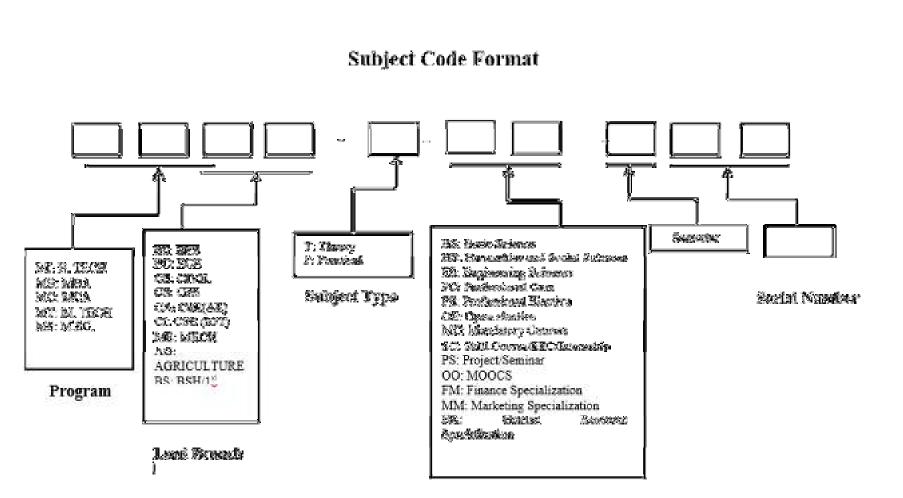
Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programme defined by NBA.

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **PO3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4: Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **P07: Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

L	Lecture
2	
Т	Tutorial
Р	Laboratory/Practical/ Sessional
WCH	Weekly Contact Hours
BS	Basic Sciences
HS	Humanities & Social Sciences (including Management)
ES	Engineering Sciences
РС	Professional Core
PE	Professional Elective
OE	Open Elective
МС	Mandatory Course
SC	Skill Course
EEC	Employability Enhancement Course
SEPD	Skill Enhancement and Personality Development


Scheme of Evaluation

Proposed Internal Examination (B. Tech, Autonomous)							
Sl. No	Type of Test	Mark	Frequency	Total Mark	Reduced Mark		
1	Modular Test	25	3	75	50		
2	Online Quiz Test	10	6	60	10		
3	Assignment	5	2	10	10		
4	Subject Specific Project	15	1	15	15		
5	Attendance	15	1	15	15		
		·	TOTAL	165	100		
				Pass Mark	45		

Propos	Proposed External Examination (B. Tech, Autonomous)						
Sl. No	Type of Test	Mark	Frequency	Total Mark			
1	End Semester Examination	1	100				
	Pass Mark						

Instructions:

- 1. Each student must appear in all of the above internal examinations without fail.
- 2. No exemption or accommodation of request will be entertained.
- 3. In case of exigency, or self-illness the student must submit ample evidence to re-appear the test. Since the schedule of the examination is non-negotiable, the request shall be sent to the competent authority.
- 4. Appearance of modular tests is part of the curriculum; hence each student is urged to appear for each modular test. Due penalty as per the examination rule shall be imposed.
- 5. For not qualifying or to improve the individual subject score in internal the student must appear on the improvement test after successful registration in CMS.

Subject Category

		Thir	d Semester					Fou	rth
]	Гheory						Th
SI. No.	Categor y	Course Code	Course Title	L-T-P	Credit	SI. No.	Categor y	Course Code	
1	BS	BTBS-T- BS-302	Applied Mathematics	4-0-0	3	1	PC	BTME-T- PC-401	Fl: an
2	PC	BTME-T- PC-301	Engineering Mechanics of Solids	4-1-0	3	2	PE	BTME-T- PE-401	St: Ma
3	PE	BTME-T- PE-301	Applied Thermodynami cs	4-0-0	3	3	PC	BTME-T- PC-402	In Ma an Ma
4	PC	BTME-T- PC-302	Basic Manufacturing Practices	4-0-0	3	4	HS	BTBS-T- HS-301	Or Be
5	HS	BTBS-T- HS-302	Engineering Economics	3-1-0	3	5	PC	BTME-T- PC-403	Me Ma
6	ES	BTCS-T- ES-301	Object Oriented Programming using JAVA	4-0-0	3	6	00	BTME-T- 00-401	NF
7	МС	BTMC-T- MC-302	Essence of Indian knowledge and Tradition-I	2-0-0	0	7	МС	BTMC-T- MC-301	Er Er
8	SC	BTSC-T- SC-301	Ability Enhancement Training -B	1-0-0	1	8	SC	BTSC-T- SC-401	At En Tr
Total H	lours/ Credi	t (Theory)		29	19	Tota	l Hours/ Cred	it (Theory)	
Practi	cal					Pra	ctical		
1	РС	BTME- P-PC- 301	Engineering Mechanics of Solids lab	0-0-3	1	1	РС	BTME-P- PC-402	Ma La
2	ES	BTCS-P- ES-301	Object Oriented Programming using JAVA lab	0-0-2	1	2	PC	BTME-P- PC-403	Me Ma
3	РС	BTPS-P- PC-301	Basic Manufacturing Practices lab	0-0-2	1	3	РС	BTME-P- PC-401	Flu an La
4	PS	BTPS- P-PS- 301	Seminar-1	0-0-2	1	4	PS	BTME-P-	Pr
5	SC	BTSC-P- SC-301	Evaluation Summer Internship-1	0-0-3	2	Т	15	PS-401	
	Total Hou	rs/ Credit (P		10	6		Total Hou	urs/ Credit	(Pra
	Grand T	'otal Hours/	Credit	39	25		Grand T	fotal Hours	s/ C
								R INTERNS	

Fourth Semester Theory					
1	РС	BTME-T- PC-401	Fluid Mechanics and Machines	4-1-0	3
2	PE	BTME-T- PE-401	Strength of Materials	4-1-0	3
3	РС	BTME-T- PC-402	Introduction to Material Science and Engineering Materials	4-1-0	3
4	HS	BTBS-T- HS-301	Organizational Behavior	4-1-0	3
5	РС	BTME-T- PC-403	Mechanisms and Machines	4-1-0	3
6	00	BTME-T- 00-401	NPTEL	2-0-0	3
7	МС	BTMC-T- MC-301	Environmental Engineering	2-0-0	0
8	SC	BTSC-T- SC-401	Ability Enhancement Training -C	2-0-0	1
Total Hours/ Credit (Theory)				32	19
Pract	ical				
1	PC	BTME-P- PC-402	Machine Drawing Lab	0-0-2	1
2	РС	BTME-P- PC-403	Mechanisms and Machines Lab	0-0-2	1
3	РС	BTME-P- PC-401	Fluid Mechanics and Machines Lab	0-0-2	1
4	PS	BTME-P- PS-401	Project-3	0-0-2	2
Total Hours/ Credit (Practical)				9	5
Grand Total Hours/ Credit				39	24

2nd Year B.Tech (Mechanical Engineering)

Contents

Second Year B. Tech Curriculum Structure				
B. Tech (3 rd and 4 th Semester)				
Item	Page No			
Curriculum Structure	2			
Evaluation Process	8			
Detailed Syllabus				
3 rd Semester Theory				
Applied Mathematics (BS)	11-12			
Engineering Mechanics of Solids (PC)	13-15			
Basic Manufacturing Practices (PC)	16-17			
Applied Thermodynamics (PC)	18-19			
Organization Behaviour/Engineering Economics and Costing (HS)	20-21			
OOPS using JAVA(ES)	22-23			
EIKT (MC)	24-25			
EET-I (AEC)	26-27			
Practical				
00Ps using Java lab (ES)	27			
Evaluation of Summer Internship-I(SC)	28-29			
Advance Machine Drawing lab (PC)	29-30			
Seminar-I (PS)	31-32			
4 th Semester Theory				
Fluid Mechanics and machines (PC)	33-34			
Introduction to Physical metallurgy and engineering (PE)	34-35			
CAD/CAM (PE)	38-39			
Organization Behaviour/Engineering Economics and Costing (HS)	40-41			
Mechanisms and Machines (PC)	42-43			
Environmental Engineering (MC)	42-44			
NPTEL – I (00)	45			

Practical

EET-II (SC)

EMOS Lab (PC)

Project-III (PS)

Fluid Mechanics and Machines Lab (PC)

Basic Manufacturing Practices Lab (PC)

46

47

49 50

51

	Proposed Internal Examination (B. Tech, Autonomous)				
Sl. No.	Type of Test	Mark	Frequency	Total Mark	Reduced Mark
1	Modular Test	25	3	100	50
2	Online Quiz Test	10	6	40	10
3	Assignment	10	2	20	10
4	Subject Specific Project	15	1	15	15
5	Attendance	15	1	15	15
	TOTAL 190				
	Pass Mark				45

Evaluation Scheme Mark Distribution for Internal& External Examinations for all Courses-2023-24

I	Proposed External Examination (B. Tech, Autonomous)			
Sl. No.	Type of Test	Mark	Frequency	Total Mark
1.	End Semester Examination	100	1	100
	Pass Mark			35

Instructions: -

- 1. Each student must appear in all of the above internal examinations without fail.
- 2. No exemption or accommodation of request will be entertained.
- 3. In case of exigency, or self-illness the student must submit ample evidence to re-appear the test. Since the schedule of the examination is non-negotiable, the request shall be sent to the competent authority.
- 4. Appearance of modular tests is part of the curriculum; hence each student is urged to appear for each modular test. Due penalty as per the examination rule shall be imposed.
- 5. For not qualifying or to improve the individual subject score in internal the student must appear on the improvement test after successful registration in CMS.

3rd Semester

Туре	Code	Applied Mathematics	L-T-P	Credits	Marks
BS	BTBS-T-BS-302	Applied Mathematics	4-0-0	3	150
Objectives	The objective of thi concepts of 1. Laplace & Fourie 2. PDEs, complex a 3. Probability.		dents with	n the knowledge	and
Pre- Requisites	A basic knowledge	of calculus, and elementary prob	oability th	eory.	
Teaching Scheme	_	lectures with use of ICT as and v ith focus on problem solving acti	-	ired, sessions ar	e planned
Detailed Syllab	ous:				
Module		Topics			Hours
Module-1	Dirac's delta functi	Laplace transformation, Inverse Laplace transformation, Unit step function, Dirac's delta function, Convolution, applications in solving differential8equations, and Integral Equations.8			
Module-II	Fourier series, Fourier expansion of functions of any period, Even and odd functions, Half range Expansion, Fourier transform and Fourier Integral.			6	
Module-III	Fourier Integral, Fourier transform, Fourier sine and cosine transforms, Basic Properties.			6	
Module-IV	Partial Differential Equations: Basic concepts, Solution of PDE by separating variables, Vibration of Springs, D'Alembert's Solution of wave equation, Heat equation: Solution by Fourier series, Heat equation: Solution by Fourier Integrals and transforms.			9	
Module V	Introduction to Complex analysis: Complex plane, polar form, power and roots, Exponential and logarithmic functions, Limit, Continuity and Derivatives, Analytic functions, Cauchy Reimann equations, Harmonic function.8			8	
Module-VI	Advance Probability: Random variables, Probability distributions, Mean and variance of a distribution, Binomial, Poisson and Normal distributions.				
Text Books [.]		Total			45 Hours

1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.

2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.

Reference Books

1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.

2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.

3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.

Course Outcomes: At the end of this course, the students will be able to:

C01	Apply the knowledge of Laplace transform to solve the complex engineering problems.
CO2	Find the Fourier series and Fourier transforms of functions.
CO3	Illustrate the applications of Laplace & Fourier Transformations.
C04	Understand the heat and wave equations.
C05	Understand the concepts of Analytic function.
C06	Understand the basic concept on probability and various distributions.

Experiential Learning:

- 1. Comparison of elongation of different material
- 2. Co-planar forces
- 3. Friction and its application
- 4. Types of beams and its application

Туре	Code	Engineering Mechanics of	L-T-P	Credits	Marks
РС	BT-ME-T-PC-301	Solids	4-1-0	3	150
Objectives	 Student will able: 1. To Compute the force, moment; determine the centroid and moment of inertia of different geometrical figures. 2. To understand the concept of stress and strain, principal stresses and principal planes. 3. To understand the concept of shear fore and bending moment due to transverse load on beams; determine deflection of beams using different methods. 				
Pre- Requisites	Class12th level math				
Teaching Scheme	8	ectures with use of ICT as and w n focus on problem solving activ	-	red, sessions a	re planned
Detailed Syllab	us:				
Module		Topics			Hours
Module-1	Introduction to Engineering Mechanics: Concurrent forces on a plane: Composition and resolution of forces and equilibrium of Concurrent co- planar forces, Methods of moment, Friction: Laws of friction, coefficient of friction, Static friction, Kinetic friction, Angle of friction, cone of friction.				
Module-II	Centre of Gravity and Centroid: Parallel forces in a plane Centre of parallel forces and center of gravity, centroid of composite plane figure and curves, Distributed parallel forces in a plane. General case of 6 forces in a plane- composition of forces in a plane and equilibrium of forces in a plane.				
Module-III	Moment of Inertia Moments of Inertia- Plane figure with respect to an axis in its plane and perpendicular to the plane- parallel axis theorem, Moment of Inertia of material bodies.			6	
Module-IV	Simple Stress and strain: stress, strain, Saint–Venant Principle, Elongation of a bar, factor of safety, Composite bars in tension and compression, temperature stresses, statically indeterminate problems, Relation between elastic constant.			6	
Module V	Shear force and Bending Moment: shear force, bending moment, Relation between Shear force and bending moment, bending moment diagram for cantilever, simply supported beam.8			8	
Module-VI	Slope and Deflection of Beams Equation of Simple Bending, Slope and Deflection of beam, Double integration method, Area moment method, Strain energy method.6				
Total			40 Hours		

1. Applied Mechanics & Strength of Material –By I.B. Prasad.

2. Engineering Mechanics by Book by S.S.Bhavikatti, NEWAGE International Publishers.

3. Rajput R.K . "Strength of Materials (Mechanics of Solids)", S.Chand & Company Ltd., New Delhi, 7th edition, 2018.

4. Rattan S.S., "StrengthofMaterials", TataMcGrawHillEducationPvt.Ltd., NewDelhi, 2017

Reference Books

1. Singh.D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.

2. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.

3. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.

course outcom	
C01	Understand the different types of force and concept of friction
C02	Understand the concept of center of gravity and centroid
CO3	Explain various theories like equilibrium of forces and moment of inertia
CO4	Understand the different types of stress and strain, properties of material and engineering constant
C05	Draw and understand shear force and bending moment diagram
C06	Formulate the relation between simple bending theory and deflection theory of beam

Туре	Code	Annelia d Theorem a domestica	L-T-P	Credits	Marks
PE	BTME-T-PE-301	Applied Thermodynamics	4-0-0	3	150
Objectives	 The students will be able to learn: 1. The first and second laws of thermodynamics and its application in day-to-day life. 2. The fundamentals of pure substance (water) and its application in Rankine cycle. 3. The working principle of air compressor and thermodynamic applications involved. 				
Pre- Requisites	Knowledge of Mathema thermodynamics.	Knowledge of Mathematics and physics in Secondary Education, fundamentals of thermodynamics.			
Teaching Pedagogy		tures with use of ICT and when requ us on problem solving activities.	uired, sessio	ons are plar	nned to
					1
Module		Topics			Hours
Module-1	Basic Concepts : Review of basics of thermodynamics. Properties, different thermodynamic systems, Equilibrium State, path and process. Quasi-static process, reversible and irreversible processes. Heat and work transfer, definition and comparison, sign convention. Displacement work and other modes of works. Indicator diagram. Zeroth law of thermodynamics–Applications and concept of temperature and thermal equilibrium. First law of thermodynamics, applications to closed and open systems, steady state and unsteady state processes, general energy equation and applications to thermal equipment.			8	
Module-II	Second Law of Thermodynamics: Kelvin-Planck and Clausius statements, heat engines and heat pump, reversibility, Carnot cycle, Carnot theorem, High- and low-grade energy. Exergy balance. Third law of thermodynamics.			6	
Module-III	Entropy . Concept of entropy, T-s diagram, TdS Equations, entropy change for- pure substance, ideal gases-different processes, principle of increase in entropy.			6	
Module-IV	Properties of Steam : Definition & Properties of Steam, Formation of steam Representation on P-V, T-S, H-S, & T-H diagram, Use of steam table & Mollier chart for finding unknown properties, solve simple numerical.			6	
Module V	Vapour Power Cycles- Rankine cycle- Ideal and actual cycle–Applications. Cycle efficiency–Simple Rankine cycle. Cycle Improvement Methods-Superheat, Reheat Regenerative, Economizer and Air preheater. Simple numerical.			8	
Module-VI	Reciprocating Air Compressors- Introduction (Uses of compressed air), The reciprocating cycle neglecting and considering clearance volume, Volumetric efficiency and its effect on compressor performance, Limitations of single stage compression, Multistage compression and intercooling, Optimum intercooler pressure, Performance and design calculations of reciprocating compressors, Air motors.			6	
	Total				40 Hours

- 1. Thermodynamics by P K Nag
- 2. Applied Thermodynamics by D S Kumar, S K Kataria & Sons

Reference Text Books:

- 1. Engineering Thermodynamics by M S Rathore
- 2. AppliedThermodynamicspaperback-1, January-2018 by Onkar Singh
- 3. Applied Thermodynamics by TDE as top Pearson Education, 5th edition

Course Outcomes: At the end of this course, the students will be able to:

C01	Understand the basic concepts of thermodynamics
CO2	Understand the foundation of heat and work transfer
CO3	Understand the foundation for power plants, heat engines and heat pump.
CO4	Understand basics of modelling of power plants and their associated techniques
CO5	Have knowledge regarding different thermodynamic cycles.
C06	Understand the concept of different types air compressors

Experiential Learning:

- 1. Energy equation (flow/non-flow process)
- 2. Application of heat engine
- 3. Application of heat pump
- 4. Application of first law of thermodynamics -Small projects on steam power plant
- 5. Application of Otto cycle, Diesel cycle, Dual cycle
- 6. Single stage and multistage air compressor

Туре	Code		L-T-P	Credits	Marks
PC	BTME-T-PC-302	Basic Manufacturing Practices	4-0-0	3	150
Objectives	to quality control, re 2.Develop skills for t	undamental principles of Good Manu egulatory compliance, and industry be maintaining consistent product quality ndustry regulations and compliance re	st practices. y		1P) related
Pre- Requisites	Fundamental of phy	undamental of physics, chemistry, some exposure to manufacturing trends.			
Teaching Scheme	0	ectures with use of ICT as and when focus on problem solving activities.	required, s	essions are	planned to
Detailed Sylla	abus:				
Module		Topics			Hours
Module-1	Introduction to cat allowances. Moldin molding, shell mo additives). Properti- and chaplets. Gatin cupola, resistance for concept of direction Degasification and	Evolutionofmanufacturingprocesses.Classificationofmanufacturingprocesses. Introduction to casting; types of patterns, pattern materials and pattern allowances. Molding Materials - sand molding, metal molding, investment molding, shell molding. Moulding sand and it's composition (binders, additives). Properties of molding sand and sand testing. Core materials, chills and chaplets. Gating system components and functions. Melting furnaces cupola, resistance furnace, induction and arc furnace. Solidification of casting, concept of directional solidifications. Solidification time and Chvorinov's rule. Degasification and inoculation of metals. Casting methods like continuous casting, centrifugal casting, disc casting. Casting defects.			
Module-II	Classification of welding processes, Fusion welding: Oxy-fuel gas welding, types of flames and uses, Arc welding: Arc welding equipment's, methods of arc initiation, arc stability and metal transfer. TIG(GTAW) and MIG(GMAW) welding, resistance welding and Thermit welding. Weldability. Modern welding methods like plasma Arc, Laser Beam, Electron Beam, Ultrasonic, Explosive friction welding and thermit welding. Brazing and soldering. Electrodes and its coatings. Welding defects: causes and remedies for welding defects. Destructive and non-destructive testing of welding and casting. Edge preparation in butt welding.				6
Module-III	Forging: Classification of forging processes, forging machines & equipment's, forging defects,Rolling: Classification of rolling processes, types of rolling mills.Extrusion: Classification of extrusion processes, Extrusion equipment, Extrusion of tubes & seamless pipes. Drawing: Drawing equipment & dies.Sheet metal working. (blanking, piercing/punching, perforating, lancing, notching, bending) Process details, applications, and material considerations.				6

Module-IV	Machining Processes:Introduction to machining.Types of machiningprocesses (turning, milling, drilling, grinding, etc.).Process details, cuttingtools,parameters,andapplications.Brief introduction to powder metallurgy processes:Process steps, powderpreparation, compaction, sintering.Applications, advantages, limitations.	9
Module V	Surface Treatment and Coating: Introduction to surface treatment. Surface finishing processes (painting, plating, thermal spraying, etc.). Coating techniques (PVD & CVD, applications, benefits	8
Module-VIIntroduction to Automation, Basic elements of automated systems- levels of automation Introduction to Computer Integrated Manufacturing. Flexible. Manufacturing. Digital Transformation in manufacturing-Trends and Challenges, Industry 4.0. Additive manufacturing		8
Total		

- $1.\ P.L. Jain, Principles of Foundry Technology, 2009, 5^{th} edition, TMHPublications.$
- 2. P.N.Rao ,Manufacturing Technology Foundry,FormingandWelding,2003,2ndEdition.
- 3. P.C.Sharma, ProductionTechnology, S. Chand.

Reference Books

- 1. Parmar R.S,Welding EngineeringandTechnology,2013,KhannaPublishers.
- 2. John K.C, Metal casting and Joining, 2015, PHI publications.

Course Outcomes: At the end of this course, the students will be able to:

C01	Knowledge about the basic concept of foundry.
C02	Understanding different joining processes.
CO3	Understand about advanced joining processes.
C04	Understand plastic deformation in metals in metal forming processes.
C05	Understand about the sheet metal working processes.
C06	Understand the concept of automation in manufacturing along with additive manufacturing.

Experiential Learning:

- 1. Preparation of wooden pattern
- 2. Preparation of sand mould
- 3. Welding practices using arc welding, gas welding, TIG and MIG welding
- 4. Rolling practice using different rolling mills
- 5. Preparation of samples using 3D printing

Туре	Code	Essence of Indian knowledge	L-T-P	Credits	Marks
МС	BTMC-T-MC-302	and Tradition-I	3-0-0	0	100
Objectives	Sustainability is at the core nature. Holistic lifestyle of Y important in modern society The course focuses on introd	g basic principles of thought proces of Indian Traditional Knowledge Yogic-science and wisdom capsule with rapid technological advance fuction to Indian Knowledge System sic principles of Yoga and holistic h	Systems co es in Sanski ements and m, Indian p	nnecting so rit literatur societal di erspective o	ociety and e are also sruptions
Pre- Requisites					
Teaching Pedagogy					
Module		Topics		H	Hours
Module -I	Introduction to traditional knowledge- Define Traditional Knowledge- Nature and Characteristics- Scope and Importance-kinds of Traditional Knowledge- The historical impact of social change on Traditional Knowledge Systems- Value of Traditional knowledge in global economy.				
Module -II	Basic structure of Indian Kn Veda - Rigveda, Samaveda, Y				
Module -III	Upaveda - (Ayurved, Dhanu	rveda, Gandharva Veda & Sthapaty	/aveda)		
Module -IV	Vedanga- (Shiksha, Kalpa, N (Dharmashastra, Meemams	lirukta, Vyakarana,Jyotisha,Chanda a, purana & Tarka Shastra)	a)& Upanga	-	
Module -V	Modern Science and Indian	Knowledge System			
Module -VI	Yoga and Holistic Health				
	Total				

Course Outcomes: Ability to understand, connect up and explain basics of Indian Traditional knowledge modern scientific perspective.

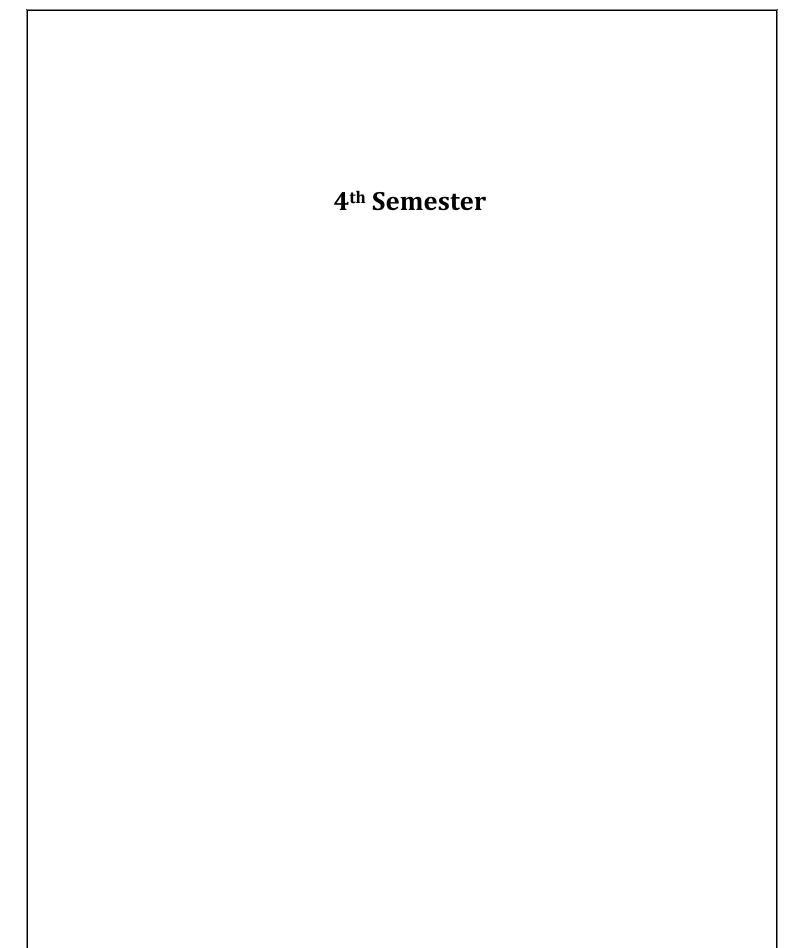
Туре	Code	Engineering Mechanics	L-T-P	Credits	Marks
PC	BT-ME-P-PC-301	of Solids Lab	0-0-3	1	100
Objectives	1. Analyse the beha 2. Apply knowledge	viour of solid bodies under va of materials and structural e -solving skills using analytica	elements	of loading	
Pre- Requisites		vsics, Vector calculus, ordinar omplex variables. Undergrad neering mechanics	• •		-
Teaching Pedagogy		lectures with use of ICT and s focus on problem solving act		ed, sessions a	re planned to
Detailed Syllab	ous				
Experiment No.		NAME OF THE EXPERIME	NT		Hours
Experiment No. 1	Verification of Poly	gon Law			3
Experiment No. 2	Determine Radius o	f gyration of compound Penc	lulum		3
Experiment No. 3	Determine coefficie	nt of friction of inclined plan	e apparatus		3
Experiment No. 4	Determine tensile a UTM	nd compressive strength of d	lifferent mat	erial using	3
Experiment No. 5	Determine fatigue s	trength of material			3
Experiment No. 6	Determine torsiona	l strength of material			3
Experiment No. 7	Estimation of spring	g constant under tension and	compressio	n	3
Experiment No. 8	Strain measuremen	t using strain gauge			3
Experiment No. 9	Determine of impac	t strength using IZOD			3
Experiment No. 10	Determine hardnes	s of material			3
	Total				30 Hours
Course Outcom	nes: At the end of this	course, the students will be a	ible to:		
C01	To know about app	lication of force in different f	ield		
CO2	To know the differe	nce of smooth surface and ro	ough surface		
CO3	To know about the	importance of tensile and con	npressive st	rength of mat	erial in desig
C04	To know about the	application of spring			
C05	To know about the	stress and strain			

Туре	Code	Object Oriented Programming	L-T-P	Credits	Marks
ES	BTCS-P-ES-301	Language using JAVA Lab	0-0-3	1	150
Objectives	To expose to the field of Problem Solving and Programming				
Pre- Requisites	Knowledge of Mathematics in Secondary Education				
Teaching Pedagogy	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real-life problem-solving activities.				

Detailed Syllabus

Experiment No	NAME OF THE EXPERIMENT	HOURS
Experiment- 1	Introduction, compiling and executing java program	2
Experiment -2	Data types, variables and design control structures	2
Experiment- 3	Loop control structures	2
Experiment- 4	Introduction to object and class	2
Experiment- 5	Inheritance, polymorphism and abstract class	2
Experiment- 6	package	2
Experiment- 7	Interfaces, Inner classes	2
Experiment- 8	Exception handling and java threads	2
Experiment- 9	Java applets	2
Experiment- 10	AWT and swings	2
	Total	20 Hours

Туре	Code	Basic Manufacturing	L-T-P	Credits	Marks		
РС	BT-ME-P-PC-301	Practices Lab	0-0-3	1	100		
Objectives	To expose to the pr	actical field of Manufacturing	g processes.		•		
Pre- Requisites	Manufacturing tool	s like pattern, mould, furnace	e, welding and f	orming equipmen	t		
Teaching Pedagogy	5 1	aboratory practices with use of with assisting tools as and when required, sessions are lanned to be interactive with focus on practical activities.					
Experiment No.		NAME OF THE EXPER	RIMENT		Hours		
Experiment No. 1	Determination of g strength of Mouldin	rain size, clay content, perme ng sand	eability and gree	en compressive	3		
Experiment No. 2	Foundry Practices				3		
Experiment No. 3	Preparation of a wo	ood pattern.			3		
Experiment No. 4	Determination of st	rrength of brazed and solder	joints		3		
Experiment No. 5	Practice and prepar	ration of job in TIG/MIG weld	ling		3		
Experiment No. 6	Practice and prepar deep drawing.	ration of job in sheet metal u	sing processes l	ike forming and	3		
Experiment No. 7	Demonstration of d	lifferent rolling mills			3		
Experiment No. 8	Demonstration of E	Extrusion processes			3		
	Total				24 Hours		
Course Outco	omes: At the end of	this course, the students w	ill be able to:				
C01	To know about app	lication of force in different f	field				
CO2	To know the differe	ence of smooth surface and re	ough surface				
CO3	To know about the	importance of tensile and co	mpressive strei	ngth of material in	design		
C04	To know about the	application of spring					
CO5	To know about the	stress and strain					


Туре	Code	EGI I	L-T-P	Credits	Marks
PS	BTME-P-SC-301	ESI-I	0-0-3	2	100

Objectives	To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
Pre- Requisites	Knowledge of Speaking with globally accepted language, subject analysis, practical implementation.
Teaching Pedagogy	Regular contact with interns and evaluation with record keeping.

METHOD OF EVALUATION:

6	Evaluation is 100% internal.
5	A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
4	At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report.
3	Each student is expected to present at least twice during the semester and the student is evaluated based on that.
2	In a session of one period per week, 5 students are expected to present the seminar.
1	During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for duration of about 8 to 10 minutes.

C01	State the functioning of organization and observe changes for self-improvement.
C02	Explain how the internship placement site fits into a broader career field.
CO3	Apply appropriate workplace behaviours in a professional setting.
C04	Solve real life challenges in the workplace by analysing work environment and conditions, and selecting.
C05	Evaluate the internship experience in terms of personal, educational and career needs.
C06	Develop ideas for suitable start-ups to become successful entrepreneur.

Туре	Code	Fluid Mechanics and	L-T-P	Credits	Marks
PC	BTME-T-PC-401	Machines	4-1-0	3	150
Objectives	2. Evaluate Performa	Principles of Fluid Mechanics nce of Hydraulic Turbines ctionality and Characteristic Curves			
Pre- Requisites	Fundamental of physics, Vector calculus, ordinary and partial differential equations, some exposure to complex variables. Undergraduate course in fluid mechanics or a background in Newtonian mechanics.				
Teaching Pedagogy	Regular class room lectures with use of ICT and when required, sessions are planned to be interactive with focus on problem solving activities.				

Detailed Syllabus

Module	Topics	Hours
Module -I	Introduction: Scope of fluid mechanics and its development as a science, Physical property of Fluid: Density, specific gravity, specific weight, specific volume, surface tension and capillarity, viscosity, compressibility and bulk modulus, Fluid classification.	7
	Pressure variation in fluids statics: Pressure, Pascal's Law, Pressure variation for incompressible fluid, atmospheric pressure, absolute pressure, gauge pressure and vacuum pressure, manometer. Hydrostatic process on submerged surfaces, force on a horizontal	
Module -II	submerged plane surface, force on a vertical submerged plane surface. Buoyancy and floatation.	8
	Archimedes' principle, stability of immersed and floating bodies, determination of metacentric height.	
Module -III	Fluid kinematics: Eulerian and Lagrangian description of fluid flow, stream function and velocity potential function. Streamline, path line and streak lines and stream tube. Classification of fluid flows-steady & unsteady, uniform, non-uniform, laminar, turbulent, Mathematical definitions of rotational, and irrotational flows, Reynolds transport theorem, differential equation of continuity. Circulation, Flow net	7
	Fluid dynamics: Introduction, Introduction to N-S equation, Euler's equation along a streamline, energy equation, Bernoulli's equation and its application to siphon, venturi meter, orifice meter, Pitot tube.	
Module -IV	Flow in pipes and ducts: Loss due to friction, Minor energy losses in pipes Hydraulic Gradient Line (HGL), Total Energy Line (TEL), Power transmission in the fluid flow in pipes, fluid flow in pipes in series and parallel. Concept of Boundary layer separation of boundary layer and its control.	8
	Impact of jets, Euler's equation - Theory of roto-dynamic machines – various efficiencies–velocitycomponentsatentryandexitoftherotor-velocitytriangles.	
Module -V	Hydraulic turbines: Classification, Impulse and Reaction turbine; Tangential, Radial and axial turbine.	8
	Impulse turbine, Pelton wheel, bucket dimensions, number of buckets in Pelton wheel efficiency and performance curves.	

	principle, Discharge, work done and power requirement, Slip, Indicator diagram Total	44 Hours
Module -VI	Centrifugal Pump: constructional features, vane shape, velocity triangles, Efficiencies, Multi-stage centrifugal pumps, Pump Characteristic, NPSH and Cavitation. Positive displacement pumps: Reciprocating Pump, working	6
	Reaction Turbines: Francis turbine and Kaplan turbine, velocity triangle and efficiencies, performance curve. Function of draft tube and casing cavitation.	

1. Modi, P.N. & Seth, S.M., "Hydraulics & Fluid Mechanics Including Hydraulic Machines", Standard Book House, 2017

2. Bansal, R.K., "Textbook of Fluid Mechanics and Hydraulic Machines", Laxmi Publications, 2011

Reference Books:

1. K. Subramanya, "Theory and Applications of Fluid Mechanics", Tata McGraw-Hill Publishing Company Ltd., 1993

2. Vijay Gupta and Santosh K. Gupta, "Fluid Mechanics and its Applications", Wiley Eastern Ltd., 1984

C01	To understand the properties of fluids and types of fluids.
CO2	Apply conservation laws to fluid flow problems in engineering applications and examine the stability of floating bodies
CO3	Apply Euler's Equation of motion and Bernoulli's equation for flow measuring devices and hydraulic machines.
C04	To understand the concepts of fluid flow measurement and flow through pipes.
C05	To understand the concepts of fluid flow measurement and flow through pipes.
C06	To determine the basic principles and characteristic curves of turbines and pumps.

- **1.** Preparation of Instrument to Measure Density of Materials
- 2. Small Project to Observe and Calculate Capillary Rise and Fall
- **3.** Small Project to Calculate Metacentric Height
- 4. Small Project to Verify Bernoulli's Equation
- 5. Small Project to Verify Pascal's Equation
- 6. Small Project to Verify Fluid Friction

Туре	Code		L-T-P	Credits	Marks
РС	BTME-T-PE-401	Strength of Materials	4-1-0	3	150

	The students will be exposed to		
Objectives	ectives 1. 2-D and 3-D state of stresses, principal stresses, Mohr's circle		
	2. Elastic Strain energy, concept of fracture mechanics and repeated stresses		
	3. Pressure vessels and composite materials		
Pre-Requisites	Elementary Mechanics of solids		
Teaching	Regular class room lectures with use of ICT and when required, sessions are planned to		
Teaching Pedagogy	Regular class room lectures with use of ICT and when required, sessions are planned to be interactive with focus on problem solving activities.		

Detailed Syllabus

Module	Topics	Hours
Module -I	Elementary concept of elasticity, stresses in three dimensions, Principal Stresses, Stress Invariants, Mohr's Circle for 2-D and 3-D state of stress, State of pure shear, plane stress. Differential equations of equilibrium.	7
Module -II	Analysis of strain, State of strain at a point, Strain Invariant, Principal Strains, Plane state of strain, Mohr's Circle for 2-D and 3-D state of strain, compatibility conditions. Energy Methods: Work done by forces and elastic strain energy stored. Reciprocal relations, Castigliano's theorems.	7
Module -III	Slope and Deflection of Beams: Slope and Deflection of beam, Double integration method, Area moment method, Strain energy method.	8
Module -IV	Repeated stresses and fatigue in metals, endurance limit and factors affecting it, and fatigue design theory, Goodman, Gerber and Soderberg criteria, Concept of stress concentration, Notch sensitivity. Introduction to Fracture Mechanics: Basic modes of fracture, Fracture toughness evaluation.	8
Module -V	Pressure vessels: Thin pressure vessels: cylindrical and spherical vessels, Thick-walled cylinder subjected to internal and external pressures, Compound cylinders, Shrink fit.	6
Module -VI	Theory of column: long column, Euler's column formula, Lateral buckling, Critical Load, slenderness ratio, eccentric load of short column.	6
	Total	42 Hours

- 1. Advanced Mechanics of Solids, L.S. Srinath, Tata McGraw Hill
- 2. Advanced Mechanics of Materials: Boresi and Schmdt, Willey

Reference book:

- 1. Advanced Mechanics of Materials: Siley and Smith
- 2. Strength of Materials Vol.II, by S.Timoshenko
- 3. Mechanical Metallurgy by Dieter
- 4. Strength of Materials by G. H. Ryder, Macmillan Press
- 5. Mechanics of Materials by Beer and Johnston, Tata-McGraw Hill
- 6. Mechanics of Materials by R.C.Hibbeler, Pearson Education
- 7. Mechanics of Materials by William F. Riley, Leroy D. Sturges & Don H. Morris, Wiley Student.
- 8. Mechanics of Materials by James M. Gere, Thomson Learning
- 9. Engineering Machanics of Solids by Egor P. Popov, Prentice Hall of India
- 10. Strength of Materials by S.S.Rattan, Tata Mc-Graw Hill

Course Outcomes: At the end of this course, the students will be able to:

C01	Understand the concept of state of stress and stress distribution due to different type of load
CO2	Understand the state of strain, concept of strain energy stored and work done by the forces.
	Evaluate slope and deflection due to transverse loading on the beam using concept of bending moment
C04	Interpret mode of fracture due to static and fatigue loading
C05	Relate basic concept of force and stress to analyze stresses in pressure vessels
C06	Evaluate lateral buckling long and short column due to critical loading and eccentric loading.

Experiential Learning:

- 1. Drawing Mohr's circle for 2D and 3D state of stress using CAD model
- 2. Model of different types of beams and loading conditions
- 3. Model showing different basic modes of failure (opening, tearing and shearing modes)
- 4. Pressure vessels (thick cylinder and thin cylinder)
- 5. Model on composite material

Туре	Code	Introduction to Physical Metallurgy	L-T-P	Credits	Marks
РС	BTME-T-PC-402	& Engineering Materials	4-1-0	3	150
Objectives	The objective of this course is To expose basic knowledge of Material science.				
Pre- Requisites	General Chemistry, materials and processes.				
Teaching Pedagogy	Regular class room lectures with use of ICT and when required, sessions are planned to be interactive with focus on problem solving activities.				

Detail Syllabus:

Module	Topics	Hours
Module -I	 Classification of Engineering Materials, properties of materials: mechanical, physical, chemical & technological, Selection of engineering material. Atomic bonding in solids. Crystal structures: Unit cells, Crystal systems, Common crystal structures in metals, crystallographic directions & planes, calculation of packing 	6
	density.	
	Imperfections in crystals- Types and causes of point defects & line defects, Surface defects and volume defects. Effect of imperfection on material properties.	
Module -II	Concept of plastic deformation of metals, critical resolved shear stress, deformation by slip and twinning, Effect of deformation on material properties. plastic deformation in polycrystalline metals, yield point phenomenon and its related effects.	8
	Recovery; Recrystallization and Grain Growth. Cold Working, Hot working. Types of solid solutions, Hume-Ruthery rules for solid solutions, factors governing solids solubility viz. size factor, valency factor, crystal structure factor and chemical affinity factor.	
Module -III	Phase diagram : Binary phase diagrams (a) Isomorphism system, (b) Eutectic system, (c) Peritectic system, (d) Eutectoid system and (e) Peritectoid system. Lever rule and its application. Effect of non-equilibrium cooling, coring and homogenization.	8
Module -IV	Iron–Iron carbide phase diagram, with salient micro-constituents of Iron and Steel. TTT-diagram: Purpose & Process of heat treatment: Annealing, normalizing, hardening, tampering Effect of heat treatment on properties of steel, Hardenability of steel & factor affecting hardenability	

Module -V	 Ferrous alloys: classification, composition and application of carbon and alloy steel. Tool steel: Effect of various alloying elements such as Cr, Mn, Ni, V, Mo. Non-Ferrous alloys: Composition and application of Duralumin, y- alloy, bronze, brass, bell metal, Monel metal and Babbitt metal. Cutting tool material. 	6
Module -VI	Nonmetals : Properties and application of thermosetting and thermoplastic polymers. Classification, composition, properties and uses of particulate based and fiber reinforced composites. Classification and uses of ceramics.	6
Total		

1. Physical Metallurgy: Principles and Practice by Ragahvan, PHI

2. Materials Science and Engineering by W.D.Callister, Wiley and Sons Inc

Reference Books:

- 1. Mechanical Metallurgy by George E.Dieter
- 2. Introduction to Physical Metallurgy by Sidney H.Avner, Tata McGraw Hill

Course Outcomes: At the end of this course, the students will be able to:

C01	Understanding the structure and properties of the materials.
CO2	Interpret different types of imperfection present in materials and its effects.
CO3	Learn the concept and effect of deformation and dislocation on material properties
C04	Comprehending micro-structural changes during iron-carbon phase transformation process.
C05	Comprehending effect of heat treatment and its effect towards change in material properties.
C06	Realizing application area of ferrous, non-ferrous metals and alloys.

Experiential Learning:

- 1. Study of Crystal structure through Ball model.
- 2. Specimen preparation for Tensile test/Impact test and evaluating Yield strength, UTs or Impact strength
- 3. Study of microstructures for different specimens in Metallurgical Microscope.
- 4. Experience the impact of materials on structures, machines and household appliances

Туре	Code	Mashaniana and Mashina	L-T-P	Credits	Marks
РС	BTME-T-PC-403	Mechanisms and Machines	4-1-0	3	150
	1. Understand the ki	nematics and dynamics of machine	S		
Objectives	2. Explore different t crank mechanisms, a	ypes of linkages and mechanisms, i nd gear trains.	ncluding fo	our-bar linkage	es, slider-
	3. Apply knowledge of mechanisms.	of kinematics and dynamics to crea	te function	al and optimiz	ed
Pre- Requisites	Students must have t Moment.	he knowledge on Basic Engineerin	g Mechanic	s, Force, Torq	ue,
Teaching Pedagogy		ectures with use of ICT and when re s on problem solving activities.	equired, ses	ssions are plar	nned to be
Detailed Sy	llabus				
Module		Topics			Hours
Module -1	 Kinematic fundamental: Basic Kinematic concepts and definitions, Degrees of freedom. Elementary Mechanism: Link, joint, Kinematic Pair, Classification of kinematic pairs, Kinematic chain and mechanism, Gruebler's criterion, Inversion of mechanism, Grashof criteria, four bar linkage and their inversions, Single slider crank mechanism, Double slider crank mechanism and their inversion. Transmission angle and toggle position, Mechanical advantage. 			8	
Module -2	Kinematic Analysis: Graphical analysis of position, velocity and acceleration of four bar and Slider crank mechanisms. Instantaneous Centre method, Aronhold-Kennedy Theorem, Rubbing velocity at a Pin-joint. Coriolis component of acceleration.			6	
Module -3	Combined Static and Inertia Force Analysis: Inertia forces analysis, velocity and acceleration of slider crank mechanism by analytical method, engine force analysis - piston effort, force acting along the connecting rod, crank effort. dynamically equivalent system, compound pendulum, correction couple.			6	
Module -4	Gear and Gear Trains: Gear Terminology and definitions, Theory of shape and actionactionoftooth properties and methods of generation of standard tooth profiles, Standardproportions, proportions, Force analysis, Interference and Undercutting, Methods for eliminating Interference, Minimum number of teeth to avoid interference. Analysis of mechanism Trains:Trains:Simple Train, Compound train, Reverted train, Epicyclic train and their applications.			6	
Module -5	Turning Moment Diagram and Flywheel: Turning moment diagram. Turning moment diagrams for different types of engines, Fluctuation of energy and fluctuation of speed. Flywheel of an internal combustion engine and for a punch machine. Determination of flywheel size from Turning Moment Diagram.			6	

Module -6	Mechanism for Control (Governors): Governors - Watt, Porter, Proell, Hartnell, Wilson Hartnell Governor. Performance parameters: Sensitiveness, Stability, Hunting, Isochronism. Governor Effort and Power, Controlling Force & Controlling Force Curve, Friction & insensitiveness, Comparison between governor and flywheel.Mechanism for Control (Gyroscope): Introduction to Gyroscopes. Gyroscopic forces and Couple. Effect of Gyroscopic Couple on Aeroplanes, Gyroscopic stabilization of ship, Stability of Two Wheelers and Four Wheelers. Rigid disc at an angle fixed to rotating shaft.	8
	Total	40 Hours

1	Theory of Machines by R.S. Khurmi, J.K. Gupta, S.Chand Publications
2	Theory of Machines by S.S.Rattan, TataMacGrawHill

Reference Books:

1	Kinematics and Dynamics of Machinery by R L Norton, Tata MacGraw Hill
2	Theory of Machines by Thomas Bevan, CBSPublications
3	Kinematics and Dynamics of Machinery by Charles E.Wilsonand, J.PeterSaddler
4	Theory of Machines and Mechanisms by John J. Uicker Jr.,Gordon, R.Pennockand Joseph E. Shigley, Oxford University Press

Course Outcomes: At the end of this course, the students will be able to:

C01	Understand different types of mechanisms and their inversions.
CO2	Evaluation of Coriolis component of acceleration.
CO3	Interpret dynamic analysis of slider crank mechanism in engines.
C04	Explain dynamic force analysis of gear mechanism.
CO5	Interpret dynamic analysis of flywheel for engines as well as for different machines.
CO6 Develop concepts of speed control systems for engines, and gyro-stabilizers for ship	
.00	aeroplanes.

Experiential Learning:

1. Model Preparation of Mechanisms to understand Grashof's Law.

2. Preparation of CAD model to understand the Coriolis component of acceleration.

3. Model Preparation of Single Slider Crank Mechanism.

4. Preparation of Physical or animated model of Simple Gear Train.

5. Use of Flywheel in IC engine.

6. Gyroscopic effect in a rotating disc.

Туре	Code	NPTEL	L-T-P	Credits	Marks
00	BTME-T-00-401		2-0-0	3	150

Туре	Code	Environmental Engineering	L-T-P	Credits	Marks
MC	BTMC-T-MC-401		2-0-0	0	150

Objectives	1. To Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.				
	 To Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions 				
	2. To Identify, formulate, review research literature and analyze complex Environmental Engineering problems using fundamentals of mathematics, sciences and engineering.				
	3. To develop solutions for Environmental Engineering problems and design system components and processes to meet the specified needs with appropriate consideration for the public health and safety.				
	4. To Apply the knowledge of mathematics, Science and Engineering fundamentals for solution of problems of Environmental Engineering.				
Pre-Requisites	Knowledge of Science and technology in Secondary level.				
Teaching Pedagogy Regular class room lectures with use of ICT and when required, sessions are placed be interactive with focus on problem solving activities.					

Detailed Syllabus

Module	Topics	Hours
Module -I	Components of Earth System: Lithosphere, Cryosphere, Atmosphere, Hydrosphere, Biosphere and Outer space. Ecological concepts and natural Resources: Ecological perspective and value of environment, Environmental auditing, Biotic components, Levels of organizations in environment Ecosystem Process: Energy, Food chain, Environmental gradients, Tolerance levels of environmental factor. Natural Resources covering Renewable and Non- renewable Resources, Forests, water, minerals, Food and land (with example of one case study); Energy, Growing energy needs, energy sources (conventional and alternative). Hydrological cycle, water balance, energy budget, precipitation, infiltration, evaporation and evapotranspiration.	
Module -II	Environmental Pollution: Definition, Causes, effects and control measures of: Water pollution, Air pollution, Noise pollution, Soil pollution, Marine pollution, Thermal pollution, Nuclear hazards Environmental Issues: Climate change, Global warming, Acid rain, Ozone layer depletion, Sustainable development, Bio gas, Natural gas, Biodiversity, Urban problems related to energy, water scarcity, Water conservation, rain water harvesting, artificial recharge, watershed management, carbon trading, carbon foot print National Ambient Air quality Standards, Noise standards, Vehicle emission standards	12
Module -III	Drinking water standard (IS 10500), Water Quality Criteria and wastewater	

Module -IV	each unit. Solid waste management: Source, classification and composition of Municipal Solid Waste (MSW), Storage and transport of MSW, MSW management, Waste minimization of MSW, Reuse and recycling, Biological & thermal treatment (principles only), land fill Biomedical Waste management – sources, treatment (principles only) and disposal Hazardous Waste Management- Introduction, Sources, Classification, treatment (principles only) Introduction to e-waste management. Environmental impact Assessment: Project screening for EIA, Scoping studies Environmental policies and acts (Air, Noise, Water, Forest, E-	10
Module -IV	Solid waste management: Source, classification and composition of Municipal Solid Waste (MSW), Storage and transport of MSW, MSW management, Waste minimization of MSW, Reuse and recycling, Biological & thermal treatment (principles only), land fill Biomedical Waste management – sources, treatment (principles only) and disposal Hazardous Waste Management- Introduction, Sources, Classification, treatment (principles only) Introduction to e-waste	10
	effluent standards Water treatment: Water sources and their quality, Lay out of a water treatment plant and working of each unit/ principles of each process i.e. Screening, Aeration, Sedimentation, coagulation, flocculation, Filtration, Disinfection. Miscellaneous treatment: Removal of color, tastes and odour control, removal of iron and manganese, fluoridation and defloridation.	10

1. Environmental Engineering, G. Kiely, TMH, 2007

Reference Books:

1. Environmental Engineering, H.S. Peavy, D.R.Rowe and G. Tchobanoglous, McGraw Hill, 1985.

2. Introduction to Environmental Engineering, M. L. Davis and D. A Cornwell, McGraw Hill International, 2005.

	Juccomes: At the end of this course, the students will be able to:
C01	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.
C02	Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions
	Identify, formulate, review research literature and analyze complex Environmental Engineering problems using fundamentals of mathematics, sciences and engineering.
	Develop solutions for Environmental Engineering problems and design system components and processes to meet the specified needs with appropriate consideration for the public health and safety.
	Apply the knowledge of mathematics, Science and Engineering fundamentals for solution of problems of Environmental Engineering.
C06	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.

Туре	Code	Machine Drawing Lab	L-T-P	Credits	Marks
РС	BT-ME-P-PC-402	Machine Drawing Lab	0-0-2	1	100

Objectives	To acquire the knowledge of CAD software and its features. To familiarize the students with
	Indian Standards on drawing practices. To impart knowledge of thread forms, fasteners, keys,
	joints and couplings. To make the students understand and interpret drawings of machine
	components leading to preparation of Assembly drawings manually and using CAD packages.
	To acquire the knowledge of limits, tolerance and fits and indicate them on machine drawings.
Pre-	Knowledge of Engineering Graphics. Knowledge about functioning of various mechanical
Requisites	components and simple component drawing by using CAD software.
Teaching	Students will be exposed to CAD software in computational lab. Drawing of machine
Pedagogy	components will be done using CAD software under the supervision of expert faculties.

Detailed Syllabus				
Experiment no.	NAME OF THE EXPERIMENT	Hours		
Experiment no. 1 Experiment no. 1 Experiment no. 1 Experiment no. 1				
Experiment no. 2	Sections of Solids:Sections of Pyramids, Prisms, Cubes, Cones and Cylinders resting only on their bases True shape of sections. Conversion of pictorial views into orthographic projections of simple machine parts. Hidden line conventions. Precedence of lines (with section planes indicated on the part)			
Experiment no. 3 Thread Forms: Thread terminology, sectional views of threads. ISO Metric (Internal & External), BSW (Internal & External) square and Acme. Sellers thread, American Standard thread.		3		
Experiment no. 4 Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly)		3		
Experiment no. 5 Keys and Joints: Parallel key, Taper key, Feather key and Gib-head key. Cotter joint (socket and spigot), knuckle joint (pin joint) for two rods.		3		
Experiment no. 6	Couplings: Split Muff coupling, Protected type flanged coupling, pin (bush) type flexible coupling, and universal coupling (Hooks' Joint)	3		
Experiment no. 7 Assembly Drawings: I.C. Engine connecting rod, Plummer block (Pedestal Bearing)		3		
Experiment no. 8	Assembly Drawings: Lever Safety Valve Screw jack (Bottle type)	3		
Experiment no. 9	Assembly Drawings: Screw jack (Bottle type)	3		
Experiment no. 10	Assembly Drawings: Tailstock of lathe	3		
	Total	30 Hours		

Textbooks:

- 1. Machine Drawing by K.R. Gopala Krishna (Subhash Publication)
- 2. Machine Drawing by N.D.Bhat & V.M. Panchal (Charoratar publishing house)
- 3. Machine Drawing by N. Siddeshwar, P. Kanniah, V.V.S. Sastri (Tata McGraw Hill)

C01	Identify the national and international standards pertaining to machine drawing
CO2	Understand the importance of the linking functional and visualization aspects in the preparation of the part drawings.
CO3	Apply limits and tolerances to assemblies and choose appropriate fits for given assemblies.
CO4	Interpret the Machining and surface finish symbols on the component drawings.
CO5	Preparation of the part or assembly drawings as per the conventions.

Туре	Code	Mechanisms and Machines Lab	L-T-P	Credits	Marks
РС	BTME-P-PC-403		0-0-2	1	150

Objectives	 Understand the dynamics of cams and gyroscopes and apply these concepts to real-world engineering problems. Study governors and evaluate their speed regulation mechanisms. Explore the effects of vibrations in mechanical systems and analyze their impact on machine performance.
Pre-	Students must have the knowledge on Basic Engineering Mechanics, Force, Torque,
Requisites	Moment.
Teaching Pedagogy	Regular class room lectures with use of ICT and when required, sessions are planned to be interactive with focus on problem solving activities.

Detailed Syllabus

Experiment No.	NAME OF THE EXPERIMENT	Hours	
Experiment No.1	Working model of Slider Crank mechanism.	3	
Experiment No.2	Working model of Whitworth quick return motion mechanism	3	
Experiment No.3	Position analysis of elliptical trammel using virtual lab.	3	
Experiment No.4	Determination of gyroscopic couple using gyroscopic test rig.	3	
Experiment No.5	Performance characteristics of a spring-loaded governor.	3	
Experiment No.6	Experiment on static and dynamic balancing apparatus.	3	
Experiment No.7	Study of various types of gear train with interference and undercutting in gear drives.	3	
Experiment No.8	Experiment on Cam Analysis Apparatus.	3	
Experiment No.9	Experiment on Journal bearing apparatus.	3	
Experiment No.10	Determination of moment of inertia of flywheel.	3	
Total			

C01	Understand the concepts and application of links, mechanisms and machines.
CO2	Develop working model using the concept of different types of mechanisms.
CO3	Analyse the concept of balancing of machineries.
CO4	Evaluate the performance characteristics of different types of governors.
CO5	Evaluate the performance of different cams and followers.

Туре	Code	Fluid Mechanics and Machines	L-T-P	Credits	Marks
		20			

РС	BT-	ME-P-PC-401	Laboratory	0-0-2	1	100	
	1. Ur	1. Understand Basic Principles of Fluid Mechanics					
Objectives		2. Evaluate Performance of Hydraulic Turbines					
			nctionality and Characteristic Curves				
Pre- Requisites	Fund some	Fundamental of physics, Vector calculus, ordinary and partial differential equations, some exposure to complex variables. Undergraduate course in fluid mechanics or a					
Requisites	back	ground in Newt	onian mechanics.				
Teaching	Regu	lar classroom le	ectures with use of ICT as and when re	equired, se	ssions are	planned	
Pedagogy	to be	interactive wit	h focus on practical problem-solving a	activities.			
Experiment	No.	NAME OF THE EXPERIMENT			Hours		
Experiment N	o. 1	Determination of metacentric height and Application to stability of floating bodies.			3		
Experiment N	0.2	Verification of Bernoulli Theorem			3		
Experiment N	0.3	3 Determination of Cv & Cd of orifice Meter			3		
Experiment No. 4		Calibration of bourdon tube pressure gauge & measurement of pressure using manometers.		3			
Experiment N				3			
Experiment N	0.6	p. 6 Experiment on impact of Jets			3		
Experiment N	o. 7 Experiments on performance of Pelton Turbine			3			
Experiment N	0.8	b. 8 Experiments on performance of Francis Turbine			3		
Experiment No. 9 Experiments on performance of centrifugal pump				3			
Experiment No	o. 10	Experiments o	on performance of reciprocating pump)		3	
		Total				30 Hours	

C01	To know about bourdon tube pressure gauge & measurement of pressure	
CO2	'o know difference in application of venturi meter& orifice meter.	
CO3	To know about the importance of meta center & center of buoyancy	
CO4	To know about the application and performance of hydraulic Turbines	
C05	To know about the application and performance of hydraulic Pumps	

Syllabus for B. Tech (3rdYear)

(2022-23 Admission Batch)

B. Tech. in Mechanical Engineering

(Approved by Academic Council and Board of Studies)

GIFT Autonomous, Bhubaneswar

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela) Recognized under section 2(f) of the UGC act, 1956 At-Gramadiha, Po. Gangapada, Via-Janla, Dist-Khorda, Pin code: 752054

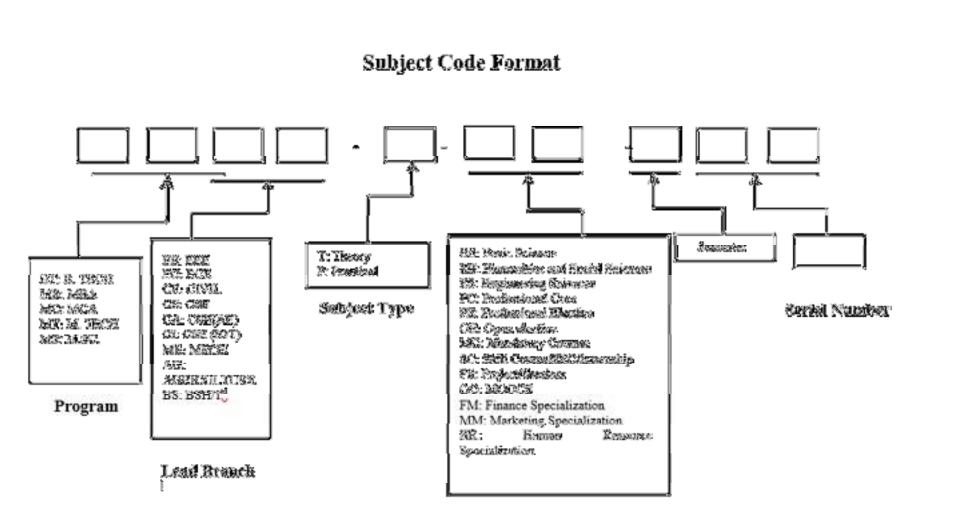
Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire competence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programmes defined by NBA.

- **PO1:** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
- **PO3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4: Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **P07: Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12:** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

L	Lecture
Т	Tutorial
Р	Laboratory/Practical/ Sessional
WCH	Weekly Contact Hours
BS	Basic Sciences
HS	Humanities & Social Sciences (including Management)
ES	Engineering Sciences
РС	Professional Core
PE	Professional Elective
OE	Open Elective
МС	Mandatory Course
SC	Skill Course
EEC	Employability Enhancement Course
SEPD	Skill Enhancement and Personality Development


Scheme of Evaluation

	Proposed Internal Examination (B. Tech, Autonomous)					
Sl. No	Type of Test	Mark	Frequency	Total Mark	Reduced Mark	
1	Modular Test	25	3	75	50	
2	Online Quiz Test	10	6	60	10	
3	Assignment	5	2	10	10	
4	Subject Specific Project	15	1	15	15	
5	Attendance	15	1	15	15	
	100					
				Pass Mark	45	

Propos	Proposed External Examination (B. Tech, Autonomous)				
Sl. No	Type of Test	Mark	Frequency	Total Mark	
1	End Semester Examination	100	1	100	
	Pass Mark		•	35	

Instructions:

- 1. Each student must appear in all of the above internal examinations without fail.
- 2. No exemption or accommodation of request will be entertained.
- 3. In case of exigency, or self-illness the student must submit ample evidence to re-appear the test. Since the schedule of the examination is non-negotiable, the request shall be sent to the competent authority.
- 4. Appearance of modular tests is part of the curriculum; hence each student is urged to appear for each modular test. Due penalty as per the examination rule shall be imposed.
- 5. For not qualifying or to improve the individual subject score in internal the student must appear on the improvement test after successful registration in CMS.

Subject Category

Course Structure,	2022-23 B. Tech.	Admission Batch
-------------------	------------------	------------------------

Fifth Semester					
Theory					
Sl. No.	Category	Course Code	Course Title	L-T-P	Credit
1	РС	BTME-T PC-501	Machine Design	4-0-0	3
2	PC	BTME-T PC-502	Internal Combustion Engines and Gas Turbines (ICGT)	4-1-0	3
3	РС	BTME-T PC-503	Machining Science & Technology	4-0-0	3
4	РС	BTME-T PC-504	Strength of Materials	4-0-0	3
5	РС	BTME-T PC-505	Power Plant Engineering	3-1-0	3
6	MC	BTMC-T- MC-503	Universal Human Value	4-0-0	0
7	AEC	BTSC-T- AEC-503	Employment Enhancement Training-3	2-0-0	1
	Total Hou	rs/ Credit (Tl	heory)	29	16
		P	racticals		
1	РС	BTME-P- PC-501	Machine Design Lab	0-0-3	1.5
2	РС	BTME-P- PC-502	CAD/CAM Lab	0-0-2	1.5
3	РС	BTME-P- PC-503	IC Engine Lab	0-0-2	1
4	РС	BTME-P- PC-504	MST lab	0-0-3	1
5	PS	BTSC-P- PS-502	Evaluation of Summer 0-0-3 Internship-2		2
6	PS	BTPS-P- PS-503	Seminar-II	0-0-2	1
	Total Hou	urs/ Credit (F	Practical)	10	8
	Grand 7	fotal Hours/	' Credit	39	24

Sixth Semester					
Theory					
Sl. No.	Category	Course Code	Course Title	L-T-P	Credit
1	BS	BTBS- T-BS- 601	Optimization Engineering	4-0-0	3
2	РС	BTME- T-PC 601	Metrology Quality Control and Reliability Engineering	4-0-0	3
3	PE	BTME- T-PE 602	Mechanical Vibration, Product Design and Production Tooling (PDPT)	4-1-0	3
4	PC	BTME- T-PC 603	Heat Transfer (HT)	4-0-0	3
5	OE	BTME- T-OE- 601	Entrepreneurship Development	4-1-0	3
6			NPTEL	2-0-0	3
7			Essence of Indian Knowledge Tradition - II	2-0-0	0
8	AEC	BTSC- T-AEC- 604	Employment Enhancement Training-4	4-0-0	1
	Total Hou	rs/ Credit	(Theory)	32	19
		P	racticals	1	
1	РС	BTME- P-PC- 601	MQCR LAB	0-0-2	1
2	PC	BTME- P-PC- 602	HT LAB	0-0-2	1
3	PS	BTPS-P PS-601	Project 4	0-0-2	2
	Total Hour	rs/Credit (Practical)	9	4
	Grand To	otal Hours	/ Credit	39	23
	SUMMER	INTERNS	HIP TRAINING for 30) Days	

3rd Year B.Tech (Mechanical Engineering)

Contents

Third Year B.Tech

Curriculum Structure

B. Tech (5 th and 6 th Semester)	
Item	Page No.
Curriculum Structure	2
Evaluation Process	8
Details Syllabus	
5 th Semester Theory	
1.Machine Design (PC)	10-11
2.Internal Combustion Engines and Gas Turbines (PC)	12-13
3.Machining Science and Technology (PC)	14-15
4.Strength of Material (PC)	16-18
5.Power Plant Engineering (PC)	18-19
6.Universal Human Values (MC)	19-20
7. Employability Enhancement Training -III (AEC)	21-22
Laboratory	
1.CAD/CAM Lab (PC)	22-23
2.Machine Design lab (PC)	22-24
3.Machining Science and Technology Lab (PC)	25
4.Evaluation of Summer Internship-II (PS)	22
5.Internal Combustion Engine Lab	26
6. Seminar-II	20
6 th Semester Theory	
1.Optimization Engineering (HS)	28-29
2.Metrology, Quality control and Reliability (PC)	29-30
3.Mechanical Vibration (PE)	31-33
4.Heat Transfer (PC)	35-36
5.Enterprenurship Development (OE)	37-38
6.NPTEL-II (PC)	39-40
7. Employability Enhancement Training –IV (AEC)	41
8. Essence of Indian Knowledge Tradition - II	44
Laboratory	
1. Metrology, Quality control and Reliability Lab (PC)	46-47
2. Heat Transfer Lab (PC)	48-49
3. Project-IV(PS)	50-51
4. Seminar-II (PS)	51-52

Evaluation Scheme

	Proposed Internal Examination (B. Tech, Autonomous)				
Sl. No.	Type of Test	Mark	Frequency	TotalMark	Reduced Mark
1	Modular Test	25	4	100	50
2	Online Quiz Test	10	4	40	10
3	Assignment	10	2	20	10
4	Subject Specific Project	15	1	15	15
5	Attendance	15	1	15	15
TOTAL 190					100
	Pass Mark				

Mark Distribution for Internal& External Examinations for all Courses-2023-24

F	Proposed External Examination (B. Tech, Autonomous)					
Sl. No.	Type of Test	TotalMark				
1.	End Semester Examination	100	1	100		
	Pass Mark					

Instructions: -

- 1. Each student must appear in all of the above internal examinations without fail.
- 2. No exemption or accommodation of request will be entertained.
- 3. In case of exigency, or self-illness the student must submit ample evidence to re-appear the test. Since the schedule of the examination is non-negotiable, the request shall be sent to the competent authority.
- 4. Appearance of modular tests is part of the curriculum; hence each student is urged to appear for each modular test. Due penalty as per the examination rule shall be imposed.
- 5. For not qualifying or to improve the individual subject score in internal the student must appear on the improvement test after successful registration in CMS.

5th Semester

Туре	Code	Mashina Dasim	L-T-P	Credits	Marks	
РС	BTME-T-PC-501	Machine Design	4-0-0	3	150	
	The objective of this course is to familiarize the students with the					
	1. Knowledge and concepts of Machine Design.					
Objectives	e e	ine elements considering loading and				
	3. Design of mach application	ine elements (like springs and bearir	igs) according	to their plac	e of	
Pre- Requisites	Basic knowledge of	Engineering mechanics and mechani	cs of solids			
Teaching Scheme	0	ectures with use of ICT as and when focus on problem solving activities.	required, sessi	ons are plan	ned to	
Detailed Sy	llabus:					
Module		Topics			Hours	
Module-1	Mechanical engineering design: Introduction to design procedure, Stages in design, Code and Standardization, Interchangeability, Preferred numbers, Fits and Tolerances.				6	
Module-II	Use of Data books. Fundamentals of Machine Design: Types of loads, Modes of failure, factor of safety concepts, Theories of Failure, Material selection.				7	
Module-III	Machine Element Design: Design of Joints: Rivets, Boiler joints, welded joint and threaded fasteners based on different types of loading, Power screw design with square thread such as screw jack.				8	
Module-IV	Design of Keys, Shaft: Classification of keys and pins, Design of sunk key, Design of shafts: based on strength, torsional rigidity and fluctuating load, ASME code for shaft design.			8		
Module V	Design of Mechanical Springs: Types of helical springs, Design of Helical springs, bulking of spring, spring surge, end condition of springs, Design of leaf springs: nipping.			6		
Module-VI	Brief over view of Bearings: rolling contact bearing, Life of rolling contact bearing, selection of rolling contact bearing. Design of sliding contact bearing, Sommerfeld Number.					
		Total			42 Hours	

1. Design of Machine Elements, V.B. Bhandari, Tata McGraw Hill

2. Mechanical Engineering Design, J.E.Shigley, C.R.Mischke, R.G.Budynas and K.J.Nisbett, TMH

Reference Books:

1. Machine Design, Pandya and Shah, Charotar Book Stall

2. Fundamentals of Machine Component Design by R.C.Juvinall and K.M.Marshek, JohnWiley & Sons.

C01	Understand the use of codes, standards, preferred number, design data book in machine design
CO2	Design different load carrying joints
CO3	Design power transmission system
C04	Design rolling contact and sliding contact bearings
C05	Design spring for different application
C06	Design different types of joints used for power transmission

- 1. Representation of types of loading (Tensile, Compressive, Shear)
- 2. Calculation of preferred no
- 3. Model of Muff coupling
- 4. Model of screw jack
- 5. Collection of different types of springs
- 6. Knuckle joint
- 7. Cotter joint
- 8. Riveted joint
- 9. Welded joint
- 10. Screw joint

Туре	Code	Internal Combustion Engines and	L-T-P	Credits	Mark s
РС	BTME-T-PC-502	Gas Turbines	4-1-0	3	150
Objectives	 The objective of this course is to familiarize the students with the 1. The thermodynamic analysis of Cycles and IC engine components 2. Combustion of fuel inside the engines and Performance of fuels under different conditions 3. Dynamics involved in the working principle of different engines. 				
Pre- Requisites	Class12th level math	ematics, Physics.			
Teaching Scheme	0	ectures with use of ICT as and when requ n focus on problem solving activities.	uired, sessio	ons are pla	nned
Detailed Syl	labus:				
Module		Topics			Hour s
Module-1	Introduction: Classification, Engine nomenclature, engine operating and performance parameters, Valve timing diagram of SI and CI engines, Comparison of SI and CI engines. Thermodynamic Analysis of cycles: Air standard and fuel-air cycle analysis of Otto, Diesel and limited pressure cycles. Effect of design and operating parameters on cycle efficiency. Modified fuel-air cycle considering heat losses and valve timing.				8
Module-II	Carburetion: Factors Affecting Carburetion, Principle of Carburetion, Simple Carburettor and its drawbacks, Calculation of the Air-Fuel Ratio, Modern Carburettors. Fuel Injection: Functional Requirements of an Injection System, Classification of Injection Systems, Fuel Feed Pump, Injection Pump, Injection Pump Governor, Mechanical Governor, Pneumatic Governor, Fuel Injector, Nozzle, Injection in SI Engine, Electronic Injection Systems, Multi-Point Fuel Injection (MPFI) System, Functional Divisions of MPFI System, Injection Timing, Group Gasoline Injection System, Electronic Diesel Injection System. Ignition: Energy requirement for ignition, requirements of an ignition system, conventional ignition systems, modern ignition systems (TCI and CDI), firing order, Ignition timing, Spark advance mechanism,				8
Module-III	Combustion: Fuels and combustion in S.I. engines, knocking and fuel rating. Energy balance, volumetric efficiency, measurement of indicated and brake power. Comparison of various types of combustion chambers. Testing and Performance: Engine dynamics and torque analysis (Power, fuel & air measurement methods, Performance characteristic curves of SI & CI engines, variables affecting performance and methods to improve engine performance).				8

	Total	Hours
	T - t - 1	44
Module-VI	Gas Turbines: Introduction, Open and closed cycle gas turbines, Analysis of practical gas turbine cycle. Air-Craft Propulsion: Analysis of Turbo Jet, Turbo Prop, Turbofan & Ram jet engines. Axial Flow & Centrifugal Compressor: Basic construction of centrifugal and axial flow compressor, Velocity diagram, performance characteristics of centrifugal and axial flow compressor, effects of slip, surging and stalling on compressor.	10
Module V	 Cooling & Lubricating Systems, Engine Emission & Controls: Air cooling & water-cooling systems, Effect of cooling on power output & efficiency, Properties of lubricants and different types of lubricating system. Modern developments in IC Engines, EGR, MPFI, CRDI, GDI, HCCI, dual fuel engine, Lean burn engine, Stratified engine (basic principles). Engine Emission and Control: Exhaust emissions, its measurement and control. Fault diagnosis of S.I. Engines. Modeling of I.C. Engine Combustion. 	4
Module-IV	Super Charging & Scavenging: Supercharging, Scavenging, Variable compressionratioengine.Wankelrotarycombustionengine.Alternative fuels for IC engines like LPG, CNG, Alcohols, Hydrogen etc., theirneed, properties, engine modification and performance.	6

- 1. IC Engines, Mathur& Sharma
- 2. Internal Combustion Engines, V. Ganesan, TMH, 3rd edition
- 3. Gas Turbines, V. Ganesan, TMH, 3rd edition

Reference Books:

- 1.Fundamentals IC Engines, J. B. Heywood, McGraw Hill
- 2. A course in IC Engines, V. M. Domkundwar, Dhanpat Rai and sons
- 3. Gas Turbines, Cohen and Roser
- 4. An Introduction to Energy Conversion, Vol.III, V. Kadambi and Manohar Prasad, New Age International
- 5. Fundamentals of Internal Combustion Engines, H. N. Gupta, PHI
- 6. Internal Combustion Engines, K.K. Ramalingam, Scitech Publications

C01	Students must be able to understand the types of air-cycles and loss factors.
CO2	Types of fuel injection system and need of fuel injector, carburettor, types of fuel used and combustion mechanism.
CO3	Performance measurement methods and improvement of combustion mechanism using cooling and lubrication.
CO4	Use of alternative fuels if any required.
CO5	Understand about cooling system, engine emission and control.
C06	Performance of gas turbine cycle and its improvement using auxiliary equipment.

- 1. To prepare a small carburettor for fuel-air mixture.
- 2. To prepare fuel injector to understand the mechanism of diesel engine.
- 3. To understand the slider-Crank mechanism with cylinder piston arrangement.
- 4. To prepare a small model of valve-timing diagram.
- 5. To prepare a small model for the ignition system of a petrol engine.
- 6. To understand the gas-turbine cycle for power plant.
- 7. To understand the cooling system for an engine.
- 8. To understand the power measurement using a dynamometer.

Туре	Code	Machining Science & Technology	L-T-P	Credits	Marks
РС	BTME-T-PC-503	Machining Science & Technology	4-0-0	3	150
Objectives	2. Understand	o I the concept of machining science, chip f the concept of traditional and non-tradit owledge of special mechanisms in differer	tional mac	hining;	tools
Pre- Requisites	Basic Machining				
Teaching Scheme	0	lectures with use of ICT as and when requ focus on problem solving activities.	uired, sess	ions are pla	anned to
Detailed Sylla	abus:				
Module		Topics			Hours
Module-1	Introduction to machining science, chip formation, types of chip, orthogonal and oblique cutting, Cutting tool and its elements. Effect of Geometrical parameters on cutting force and surface finish, chip thickness ratio. Geometry of cutting tools in ASA and ORS, Mechanics of chip formation, Merchant's theory, velocity relationship and force relationship, numerical, Cutting tool materials.				7
Module-II	Types of Tool Wear: Flank wear, Crater wear; heat generation in metal cutting, function, characteristics and types of cutting fluid; Tool life and Taylor's equation; Effect of variables on tool life and surface finish, Measurement of cutting force, Lathe tool dynamometer, Drill tool dynamometer. Economics of machining.			6	
Module-III	Conventional machining process, machine tools and their specifications, working principles of Turning, Drilling, Shaping, Planning, Milling, Grinding (surface and cylindrical and internal) along with different mechanisms used: Indexing mechanism and thread cutting mechanism, Quick return mechanism				9
Module-IV	Tool holding and job holding methods in different Machine tools. surface roughness measurement, use of measuring tools: Vernier calliper, micrometre.				4
Module V	Production Machine tools – Capstan and turret lathes, single spindle and multi spindle semiautomatics, Gear shaper and Gear hobbing machines, Copying lathe and transfer machine. CNC machine tools and their applications.			8	
Module-VI	Introduction to non-traditional Machining processes: need and applications of NTM in modern industries, Ultrasonic Machining, Laser Beam Machining, Plasma Arc Machining, Electro Chemical Machining, Electro Discharge Machining, Wire EDM, Abrasive Jet Machining				6
		Total			40 Hours

- 1. Fundamentals of Machining and Machine Tools, G.Boothroyd and W.A.Knight, CRC Press
- 2. Metal Cutting Principles, M.C.Shaw, Oxford University Press
- 3. Metal Cutting Theory and Practice, A.Bhattacharya, Central Book Publishers

Reference Books:

- 1. Production Technology, P. C. Sharma, S. Chand Publication
- 2. Manufacturing Technology by P.N.Rao, Tata McGraw Hill publication.
- 3. Modern Manufacturing Processes, P.C.Pandey, H.S.Shan, Tata McGraw Hill
- 4. Manufacturing Science, Ghosh and Mallik, East West Press.
- 5. Principles of Metal Cutting, G.Kuppuswamy, Universities Press
- 6.Metal Cutting and Machine Tools, G.T.Reddy, Scitech

Course Outcomes: At the end of this course, the students will be able to:

C01	Knowledge about the fundamentals of Machining and Machine Tools.
CO2	Calculate the cutting force and velocity of a tool.
CO3	Knowledge about Conventional machining process and machine tools.
CO4	Knowledge about jigs and fixtures
C05	Knowledge about Production machine tools.
C06	Knowledge about Non-traditional Machining processes.

- 1. To prepare required job using lathe.
- 2. To design a small tool using machining parameters.
- 3. To prepare complex contours using various M/Cs.
- 4. Knowledge of non-conventional machining process.
- 5. Handling of CNC machine.

Туре	Code	Strength of Materials	L-T-P	Credits	Marks		
PC	BTME-T-PC-504	Strength of Materials	4-0-0	3	150		
	The students will be exposed	to					
Objectives	1. 2-D and 3-D state of stresses, principal stresses, Mohr's circle						
,	2. Elastic Strain energy, conce	-	id repeated	l stresses			
	3. Pressure vessels and composite materials						
Pre- Requisites	Elementary Mechanics of soli	ds.					
Teaching Scheme	Regular classroom lectures w to be interactive with focus or		-	essions are j	olanned		
Detailed Sylla	bus:						
Module		Topics			Hours		
Module-1	Elementary concept of elas Stresses, Stress Invariants, M of pure shear, plane stress. Di	ohr's Circle for 2-D and 3-D) state of s		7		
Module-II	Analysis of strain, State of strain at a point, Strain Invariant, Principal Strains, Plane state of strain, Mohr's Circle for 2-D and 3-D state of strain, compatibility conditions. Energy Methods: Work done by forces and elastic strain energy stored. Reciprocal relations, Castiglione's theorems.			7			
Module-III	Slope and Deflection of Beams: Slope and Deflection of beam, Double integration method, Area moment method, Strain energy method.			8			
Module-IV	Repeated stresses and fatigue in metals, endurance limit and factors affecting it, and fatigue design theory, Goodman, Gerber and Soderberg criteria, Concept of stress concentration, Notch sensitivity. Introduction to Fracture Mechanics: Basic modes of fracture, Fracture toughness evaluation.				8		
Module V	Pressure vessels: Thin pressure vessels: cylindrical and spherical vessels, Thick-walled cylinder subjected to internal and external pressures, Compound cylinders, Shrink fit.			6			
Module-VI	Theory of column: long column, Euler's column formula, Lateral buckling, Critical Load, slenderness ratio, eccentric load of short column.				6		
	T	otal			42 Hours		

- 1. Advanced Mechanics of Solids, L.S. Srinath, Tata McGraw Hill
- 2. Advanced Mechanics of Materials: Boresi and Schmdt, Willey

Reference Books

- 1. Advanced Mechanics of Materials: Siley and Smith
- 2. Strength of Materials Vol.II, by S.Timoshenko
- 3. Mechanical Metallurgy by Dieter
- 4. Strength of Materials by G. H. Ryder, Macmillan Press
- 5. Mechanics of Materials by Beer and Johnston, TataMcGraw Hill
- 6. Mechanics of Materials by R.C.Hibbeler, Pearson Education
- 7. Mechanics of Materials by William F.Riley, Leroy D.Sturges& Don H.Morris, Wiley Student.
- 8. Mechanics of Materials by James M. Gere, Thomson Learning
- 9. Engineering Mechanics of Solids by Egor P. Popov, Prentice Hall of India
- 10. Strength of Materials by S.S.Rattan, Tata McGraw Hill

Course Outcomes: At the end of this course, the students will be able to:

C01	Understand the concept of state of stress and stress distribution due to different type of load
CO2	Understand the state of strain, concept of strain energy stored and work done by the forces.
CO3	Evaluate slope and deflection due to transverse loading on the beam using concept of bending moment
CO4	Interpret mode of fracture due to static and fatigue loading
C05	Relate basic concept of force and stress to analyze stresses in pressure vessels
C06	Evaluate lateral buckling long and short column due to critical loading and eccentric loading.

- 1. Drawing Mohr's circle for 2D and 3D state of stress using CAD model
- 2. Model of different types of beams and loading conditions
- 3. Model showing different basic modes of failure (opening, tearing and shearing modes)
- 4. Pressure vessels (thick cylinder and thin cylinder)
- 5. Model on composite material

Туре	Code		L-T-P	Credits	Marks
PE	BTME-T-PE-501	Power Plant Engineering	3-1-0	3	150
Objectives	2. Understand the cor	ble to understand: sources of power produced. cept of power generation from a pow t components of a power plant.	ver plant.		
Pre- Requisites	Basic Thermodynami				
Teaching Scheme	0	ctures with use of ICT as and when red cus on problem solving activities.	quired, sess	sions are pla	anned to
Detailed Sylla	bus:				
Module		Topics			Hours
Module-1	Introduction: Power p	olants – types and classification based	on energy	sources.	2
Module-II	Coal based Thermal Power Plants: Basic Rankine cycle and its modifications; Layout of modern coal power plant; Super critical boilers, FBC boilers; Turbines, condensers, steam and heating rates; Subsystems of thermal power plants; Fuel and ash handling; Draught system; Feed water treatment; Binary cycles and cogeneration systems.			8	
Module-III	Gas Turbine and Combined Cycle Power Plants: Brayton cycle analysis and optimization; Components of gas turbine power plants; Combined cycle power plants; Integrated Gasifier based Combined Cycle (IGCC) systems.			6	
Module-IV	Nuclear Power Plants: Basics of nuclear energy conversion; Layout and subsystems of nuclear power plants; Boiling Water Reactor (BWR); Pressurized Water Reactor (PWR); CANDU Reactor; Pressurized Heavy Water Reactor (PHWR); Fast Breeder Reactors (FBR); Gas cooled and liquid metal cooled reactors; Safety measures for nuclear power plants.			8	
Module V	Hydroelectric Power Plants: Classification; Typical layout and components. Renewable Power Systems: Principles of wind, tidal, solar photo-voltaic, solar thermal, geothermal, biogas and fuel cell power systems.			4	
Module-VI	Energy Economics and Environment: Economic and environmental issues; Power tariffs; Load distribution parameters; Load curve; Capital and operating cost of different power plants; Pollution control technologies including waste disposal options for coal and nuclear plants.				6
Total					34 Hours

- 1. "Theory and Applications of Fluid Mechanics" by K. Subramanya
- 2. "Power Plant Engineering" by Manoj Kumar Gupta

Reference Books

- 1. "Power Plant Engineering" by Larry Drbal, Kayla Westra, and Pat Boston
- 2. "Power Plant Instrumentation and Control Handbook" by Swapan Basu

Course Outcomes: At the end of this course, the students will be able to:

C01	Learn the source of power generation utilizing natural resources.
CO2	Understand the power generation process in a power plant.
CO3	Evaluate the energy production from a definite power plant.
CO4	Design the different components of a power plant.
C05	Effect of generation on the environment.
C06	Calculate the energy economics and its utilization after its production.

- 1. Overall idea of a model power plant running.
- 2. Calculation of power production and consumption of a power plant.
- 3. Ability to design a power plant.
- 4. Precaution measure to save energy.
- 5. Safety of environment and human being.

Туре	Code	Universal Human Values	L-T-P	Credits	Marks	
МС	BTME-T-MC-503	Universal Human Values	4-0-0	0	150	
Objectives	 1-To help the students appreciate the essential complementarily between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings. 2-To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way. 3-To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with 					
Pre-Requisites	Nature. Any under graduate stud	lent	-			
Teaching Scheme		res with use of ICT as and when red problem solving activities.	quired, sess	sions are plai	nned to be	
Detailed Syllabus:						
Module		Topics			Hours	
Module-1	Foundations of Value Education-A Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education); Understanding Value Education; Self-exploration as the Process for Value Education.			3		
Module-II	Foundations of Value Education-B Continuous Happiness and Prosperity-the Basic Human Aspiration; Happiness and Prosperity-Current Scenario; Method to Fulfill the Basic Human Aspirations.			3		
Module-III	Harmony in the Human Life, Relationships and Society-A Understanding Human being as the Co-existence of the Self and the Body; Distinguishing between the Needs of the Self and the Body; Achieving Harmony: Integrating Self and the Body; Harmony in the Family and Society.				4	
Module-IV	Harmony in the Human Life, Relationships and Society- B 'Trust' & 'Respect'-as Foundational Values in Relationship; Other Feelings, Justice in Human-to-Human Relationship; Understanding Harmony in the Society &Universal Human Order.			3		
Module V	Harmony in the Nature/Existence & Professional Ethics-A Understanding Harmony in the Nature; Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature; Realizing Existence as Co-existence at All Levels			3		
Module-VI	Harmony in the Nature/Existence & Professional Ethics-B The Holistic Perception of Harmony in Existence; Natural Acceptance of Human Values; Humanistic Education, Humanistic Constitution and Universal Human Order; Competence in Professional Ethics-Ethical Decision Making & Transition towards Value-based Life and Profession.				4	
Total					20 Hours	

- 1. A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria,
- 2ndRevised Edition, 2. Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1
- 3. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 4. Gaur. R.R.Sangal. R. Bagaria. G.P, A Foundation Course in Value Education, Excel Books, 2009.
- 5. Small is Beautiful E. F Schumacher.
- 6. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.

Reference Books

1. Dr. Ritu Saryan, Universal Human Values and Professional Ethics

Course Outcomes: At the end of this course, the students will be able to:

C01	To understand and analyses the foundations of value education, essentials of human values and skills, self-exploration, happiness and prosperity.
C02	Understand and analyze the foundations of value education, continuous happiness, and prosperity and basic human aspirations.
C03	Identify and evaluate the role of harmony in human life, relationship and harmony in family and society.
C04	Understand and associate the holistic perception of harmony at all levels such as existence of trust and respect, justice in human-to-human relationship.
C05	Develop appropriate technologies and management patterns to create harmony in professional and personal lives, harmony in the Nature/Existence such as understanding Harmony in the Nature; Interconnectedness, self-regulation and Mutual Fulfillment.
C06	Develop appropriate technologies and management patterns to create harmony in professional and personal lives like Natural Acceptance of Human Values.

- 1. Essence of human being.
- 2. Adoption of society.
- 3. Holistic nature.
- 4. Family Relation
- 5. Relation with others

Туре	Code	ггт Э	L-T-P	Credits	Marks	
AEC	BTSC-T-AEC-503	EET-3	2-0-0	0.5	100	
	The students will be able	e to understand:				
	1. To provide job related knowledge to the students					
Objectives	2. To bridge the gap bet for by the organization.	tween skills possessed by the	students and the a	abilities that is	looked	
	3. To develop an attitude	e of constant self-improvemen	t throughout their	career		
Pre-Requisites	To help students practic	e and understand the various	company pattern to	ests.		
Teaching Scheme	-	res with use of ICT as and wl n problem solving activities.	nen required, sessi	ons are planne	ed to be	
Detailed Syllab	us:					
Module		Topics			Hours	
Module-1	Thermodynamics: systems; properties of pure substances, behaviour of ideal and real gases; zero and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations. Power Engineering: Air and gas compressors; vapor and gas power cycles, concepts of regeneration and reheat.			5		
Module-II	Applications: Power Engineering: Air and gas compressors; vapor, and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Types of Engines, Air-standard Otto, Diesel and dual cycles.			5		
Module-III	Refrigeration and air-conditioning: Vapor and gas refrigeration and heat pump cycles; properties of moist air, psychometric chart, basic psychometric processes. Turbo machinery: Impulse and reaction principles, velocity diagrams, Peloton-wheel, Francis and Kaplan turbines; steam and gas turbine				5	
Module-IV	Engineering Materials: Structure and properties of engineering, materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials. Introduction to Physical Metallurgy: Reactions and Processes, Iron Carbon Diagram, Types of steels and Alloy formation.			5		
Module V	Basic Manufacturing Processes: Welding, its types, Soldering and Brazing, Casting, its types, defects, uses, Milling, Drilling, Grinding, Sheet Metal Processes and other related processes. Manufacturing Technology: Cutting Angles, Machining processes and criteria.			5		
Module-VI	Computer Integrated Manufacturing: Basic concepts of CAD/CAM and their integration tools; additive manufacturing Introduction of AUTOCAD: Draw commands, Cartesian coordinate system, Modify commands, Text command layers blocks, Isometric drawings,2D fundamentals.			5		
	1	Total			30 Hours	

- 1. Thermal Engineering-P.K.Nag
- 2. Physical Metallurgy by Lakhtin
- 3. Manufacturing Technology: P.N.Rao

Reference Books

- 1. Thermodynamics: An Engineering Approach by Yunus A Cengel
- 2. Mechanical Engineering Objectives by RS Khurmi

C01	To help students explore their values and career choices through individual skill assessments.
CO2	To make realistic employment choices and to identify the steps necessary to achieve a goal.
CO3	To encourage students to make smarter career decisions in accordance with their interests, abilities and prepares them for the future.
CO4	To disseminate knowledge and appropriate skill practices through recognized systems of training and testing.
CO5	To Match the objectives with company goals.

Туре	Code	Machine Design Lab	L-T-P	Credits	Marks
PC	BTME-P-PC-502		0-0-3	2	150
Objectives	 The students will be able to understand: 1. The knowledge of Mechanical engineering in designing joints and couplings 2. The knowledge of thermal engineering and strength of materials to design IC Engine parts. 3. knowledge of material properties and mechanical advantage lever, spring and flywheel 				
Pre-Requisites	Knowledge of Engineering Mechanics, Mechanics of solids, Engineering Graphics software.				
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.				

Detailed Syllabus:

Students will perform design based on the theoretical knowledge, they will use the dimensions obtained to do the modelling, apply the load and boundary conditions and analyse using the CAD software (any 6)

Module	Topics	Hours	
Experiment-1	Design of Cotter/ Knuckle Joint	3	
Experiment-2	Design of Rigid coupling	3	
Experiment-3	Design of Flexible coupling	3	
Experiment-4	Design of Footstep Bearing	3	
Experiment-5	Design of Pressure vessel/Boiler	3	
Experiment-6	Design of IC engine parts	3	
Experiment-7	Experiment-7 Design of screwed joint for Eccentric loading		
Experiment-8	Design of Lever	3	
Experiment-9	Design of spring used for Safety valve	3	
Experiment-10	Design of Flywheel	3	
T-t-l			
Total			

Text Books:

Design Hand Book:

1. P.S.G. Design Data Hand Book, PSG College of Tech Coimbatore

2. Design Data Hand Book, K. Lingaiah, McGraw Hill, 2nd Ed. 2003.

3. Design Hand Book by S.M.Jalaluddin; Anuradha Agencies Publications

4. Design Data Hand Book by K.Mahadevan and B.Reddy,CBS Publishers

C01	Design of riveted joint for pressure vessel
C02	Design load bearing joints for eccentric loading
C03	Design coupling for power transmission from one shaft to another
CO4	Design bearings for different applications
C05	Design spring and lever
C06	Design IC engine parts and flywheel

Туре	Code		L-T-P	Credits	Marks		
PC	BTME-P-PC-501	CAD/CAM Lab	0-0-3	2	150		
	Students will able to:						
Objectives	1. Expose to the field of L	1. Expose to the field of Limits Fits and interchangeability					
Objectives	2. Use of CAD software fo	r modeling of simple machin	ne parts				
	3. Learn coding for CAM	programming for CNC mach	ines				
Pre-Requisites	Knowledge of Engineerin	g Drawing and CAD softwar	e				
Teaching Scheme	Regular Lab with use of C focus on real-life problem	AD software. Each session i 1-solving activities.	s planned t	o be interac	tive with		
Detailed Syllabus	S:						
Module		Topics			Hours		
Experiment-1	Introduction- Role of CAD in product design process- GD&T, Limits, Fits- Basics				3		
Experiment-2	Sketching: Development of part drawings for various components in the form of orthographic Representation of dimensioning and tolerances.				3		
Experiment-3	Study of Solid modeling Package (CATIA-V5). Solid Modeling of simple machine parts.						
Experiment-4	Detailing and assembly of flange coupling using CATIA-V5				3		
Experiment-5	Detailing and assembly of screw jack using CATIA-V5				3		
Experiment-6	Detailing and assembly of	f cotter and knuckle joint us	ing CATIA-	V5	3		
Experiment-7	Introduction-CAM-Manual part programming-Computer aided part programming basics				3		
Experiment-8	Manual part programming for step turning operation in CNC turning centre.				3		
Experiment-9	Manual part programmin				3		
Experiment-10	NC code generation for pocket milling and drilling operation using N-X						
		Гotal			30		
Iotai					Hours		

C01	Understand and interpret machine manufacturing drawings
C02	Modeling of simple machine parts and assemblies from the part drawings using standard high-end CAD softwares.
CO3	Apply engineering drawing standards as per BIS conventions.
CO4	Understand how to generate CNC Turning and Milling codes for different operations using standard CAM packages.
C05	Prepare manual part program as well as CNC part program and perform for machining.

Туре	Code	Internal Combustion Engines	L-T-P	Credits	Marks	
PC	BTME-P-PC-503	and Gas Turbines Lab	0-0-3	1	150	
ObjectivesStudents will be exposed to: 1.Components and performance of SI and CI engines (single cylinder and multi- cylinder) 2. Practical study of carburetor and fuel injection system 3. Practical performance of variable compression ratio						
Pre- Requisites	Basic Thermodynam	nics				
Teaching Scheme	0	ectures with use of ICT as and when a ctive with focus on practical problem	-			
Detailed Syllab	us:					
	us:	Tonics			Hours	
Detailed Syllab Module Experiment-1		Topics g diagram of a petrol/diesel engine & of an IC engine.	& study of its	s impact	Hours 3	
Module	To draw valve timin on the performance	g diagram of a petrol/diesel engine &	-	-		
Module Experiment-1	To draw valve timin on the performance To conduct load test	g diagram of a petrol/diesel engine & of an IC engine.	nder C.I. Eng	gine	3	
Module Experiment-1 Experiment-2	To draw valve timin on the performance To conduct load test To conduct load test	g diagram of a petrol/diesel engine & of an IC engine. or performance test on a single cylin	nder C.I. Eng nder S.I. Eng	jine jine	3	
Module Experiment-1 Experiment-2 Experiment-3	To draw valve timin on the performance To conduct load test To conduct load test	g diagram of a petrol/diesel engine & of an IC engine. or performance test on a single cylin or performance test on a single cylin ance test or Morse test on the multi-	nder C.I. Eng nder S.I. Eng	jine jine	3 3 3	
Module Experiment-1 Experiment-2 Experiment-3 Experiment-4	To draw valve timin on the performance To conduct load test To conduct load test To conduct Perform Model study of Soles	g diagram of a petrol/diesel engine & of an IC engine. or performance test on a single cylin or performance test on a single cylin ance test or Morse test on the multi-	nder C.I. Eng nder S.I. Eng cylinder S.I.	jine jine	3 3 3 3 3	
Module Experiment-1 Experiment-2 Experiment-3 Experiment-4 Experiment-5	To draw valve timin on the performance To conduct load test To conduct load test To conduct Perform Model study of Soles To prepare the heat	g diagram of a petrol/diesel engine & of an IC engine. or performance test on a single cylin or performance test on a single cylin ance test or Morse test on the multi- c Carburetor	nder C.I. Eng nder S.I. Eng cylinder S.I.	jine jine	3 3 3 3 3 3	
Module Experiment-1 Experiment-2 Experiment-3 Experiment-4 Experiment-5	To draw valve timin on the performance To conduct load test To conduct load test To conduct Perform Model study of Soley To prepare the heat Model study of Fuel	g diagram of a petrol/diesel engine & of an IC engine. or performance test on a single cylin or performance test on a single cylin ance test or Morse test on the multi- c Carburetor balance sheet on single cylinder, C.I.	nder C.I. Eng nder S.I. Eng cylinder S.I. Engine	jine jine	3 3 3 3 3 3 3 3	

C01	Understand the operation mechanism of S.I. and C.I. engine.
C02	The methods of calculation of efficiency of single cylinder and multi-cylinder SI and CI engines.
CO3	Heat balance sheet calculation will provide the principle of energy conservation.
CO4	Methods applied to improve the efficiency of the engine.

Туре	Code	Manufacturing Science and	L-T-P	Credits	Marks
PC	BTME-P-PC-503	Technology Lab	0-0-3	1	150
	Students will able to				
Ohiostinos	1.Expose to the field o	of manual and numerical machining p	processes.		
Objectives	2. Explore the possibl	e modeling using machining paramet	ters.		
	3.Learn coding for CN	C machining processes.			
Pre-Requisites					
Teaching					
Scheme					
Detailed Syllabu	S:				
	1				
Module	Topics			Hours	
					nours
Experiment-1	Job on lathe with tapp experiments).	per turning, thread cutting, knurling a	and groove o	cutting (3	3
Experiment-1 Experiment-2	experiments).		and groove o	cutting (3	
_	experiments). Gear cutting (with inc	per turning, thread cutting, knurling a	and groove (cutting (3	3
Experiment-2	experiments). Gear cutting (with inc Working with shaper,	ber turning, thread cutting, knurling a lex head) on milling machine	and groove o	cutting (3	3
Experiment-2 Experiment-3	experiments). Gear cutting (with inc Working with shaper, Working with surface	ber turning, thread cutting, knurling a lex head) on milling machine , Planner and slotting machine.		cutting (3	3 3 3
Experiment-2 Experiment-3 Experiment-4	experiments). Gear cutting (with inc Working with shaper, Working with surface Determination of cutt	ber turning, thread cutting, knurling a dex head) on milling machine , Planner and slotting machine. e and cylindrical grinding.	eter.		3 3 3 3 3
Experiment-2 Experiment-3 Experiment-4 Experiment-5	experiments). Gear cutting (with inc Working with shaper, Working with surface Determination of cutt Determination of cutt	ber turning, thread cutting, knurling a dex head) on milling machine , Planner and slotting machine. and cylindrical grinding. ing force using Lathe tool dynamome	eter. ynamomete	er.	3 3 3 3 3 3
Experiment-2 Experiment-3 Experiment-4 Experiment-5 Experiment-6	experiments). Gear cutting (with inc Working with shaper, Working with surface Determination of cutt Determination of cutt Study of Non-tradition	ber turning, thread cutting, knurling a dex head) on milling machine , Planner and slotting machine. e and cylindrical grinding. hing force using Lathe tool dynamome ing force in drilling using drill tool dy	eter. ynamomete EDM, ECM)	er.	3 3 3 3 3 3 3 3
Experiment-2 Experiment-3 Experiment-4 Experiment-5 Experiment-6 Experiment-7	experiments). Gear cutting (with inc Working with shaper, Working with surface Determination of cutt Determination of cutt Study of Non-tradition Study of CNC Lathe ar	ber turning, thread cutting, knurling a dex head) on milling machine , Planner and slotting machine. e and cylindrical grinding. ting force using Lathe tool dynamome ting force in drilling using drill tool dy nal machining processes. (USM, AJM,	eter. ynamomete EDM, ECM) VC lathe.	er.	3 3 3 3 3 3 3 3 3
Experiment-2 Experiment-3 Experiment-4 Experiment-5 Experiment-6 Experiment-7 Experiment-8	experiments). Gear cutting (with inc Working with shaper, Working with surface Determination of cutt Determination of cutt Study of Non-tradition Study of CNC Lathe ar Study of CNC Milling r	ber turning, thread cutting, knurling a dex head) on milling machine , Planner and slotting machine. and cylindrical grinding. ing force using Lathe tool dynamome ing force in drilling using drill tool dy nal machining processes. (USM, AJM, nd demonstration of making job in CN	eter. ynamomete EDM, ECM) VC lathe.	er.	3 3 3 3 3 3 3 3 3 3 3

C01	Learn the various machining processes using Lathe.
C02	Understand the processes involved in the Lathe, Milling, shaper and slotting M/C.
CO3	Analyze to calculate the cutting force using dynamometer.
C04	Analyze to study the non-traditional Machining processes.
C05	Design the machining processes in numerical controlled M/C.
C06	Demonstration of Machining process using numerical controlled machine.

Туре	Code	Evaluation of Summer	L-T-P	Credits	Marks
PS	BTME-P-PS-501	Internship-II	0-0-2	1	150
	1. To encourage the students to study advanced engineering developments				
Objectives		esent technical reports.			
	3. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.				
Pre- Requisites	Knowledge of Speaking with globally accepted language and subject analysis.				
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.				
METHOD OF EVALUATION:					

During the seminar session each student is expected to prepare and present a topic on engineering /technology, for duration of about 8 to 10 minutes.

1. In a session of one period per week, 5 students are expected to present the seminar.

2. Each student is expected to present at least twice during the semester and the student is evaluated based on that.

3. At the end of the semester, he/she can submit a report on his / her topic of seminar and marks are awarded based on the report.

4. A Faculty guide is to be allotted and he/she will guide and monitor the progress of the student and maintain attendance also.

5. Evaluation is 100% internal.

C01	Outline the topics on modern technology; prepare implementation of the same as the presentation.
CO2	Understanding the technologies used by extracting the new things to be implemented by reviewing the journals/research papers.
CO3	Sketch the application of the technology for the use of the mankind.
CO4	Analyse and correlate the new technology with the subject of interest for further study.
C05	Evaluate, plan and reframe the technology with the communication skills for a better explanation and presentation.
C06	Modify and design the concept into the realistic world.

Туре	Code	Sominon II	L-T-P	Credits	Marks
PS	BTME-P-PS-602	Seminar-II	0-0-2	1	150
	1. To encourage the students to study advanced engineering developments				
Objectives	2. To prepare and presen	t technical reports.			
objectives	0	encourage the students to use various teaching aids such as overhead projectors, r point presentation and demonstrative models.			
Pre- Requisites	Knowledge of Speaking with globally accepted language and subject analysis.				
Teaching Scheme	Regular seminar presentation and evaluation with record keeping.				
METHOD OF	EVALUATION:				

1. During the seminar session each student is expected to prepare and present a topic on engineering/technology, for duration of about 8 to 10 minutes.

2. In a session of one period per week, 5 students are expected to present the seminar.

3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.

4. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are awarded based on the report.

5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.

6. Evaluation is 100% internal.

C01	Outline the topics on modern technology; prepare implementation of the same as the presentation.
CO2	Understanding the technologies used by extracting the new things to be implemented by reviewing the journals/research papers.
C03	Sketch the application of the technology for the use of the mankind.
CO4	Analyse and correlate the new technology with the subject of interest for further study.
C05	Evaluate, plan and reframe the technology with the communication skills for a better explanation and presentation.
C06	Modify and design the concept into the realistic world.

6th Semester

Туре	Code	Optimization in Engineering	L-T-P	Credits	Marks
BS	BTBS-T-BS-601	Optimization in Engineering	4-0-0	3	150
Objectives	The students will be ab	le to understand:			
Pre- Requisites					
Teaching Scheme		ures with use of ICT as and when require on problem solving activities.	d, sessions ar	re planned to	o be
Detailed Syllab	ous:				
Module		Topics			Hours
Module-1		ptimization problems, modeling of pro ramming: Formulation of LPP, Graphical		rinciple of	5
Module-II	Simplex method, Big-M method, Dual simplex method, Duality theory.				7
Module-III	Transportation problems: Finding an initial basic feasible solution by Northwest Corner rule, Least Cost rule, Vogel's approximation method, Degeneracy, Optimality test, MODI method, Assignment problems: Hungarian method for solution of Assignment problems. Travel Salesman problem.				
Module-IV	Non-linear programming: Introduction to non-linear programming. Unconstraint optimization: Fibonacci and Golden Section Search method.				5
Module V	Non-linear programming problem: Constrained optimization with equality constraint: Lagrange multiplier method. Constrained optimization with inequality constraint: Kuhn-Tucker condition.				5
Module-VI	Inventory Theory: General characteristics, Deterministic Inventory models: EOQ model with constant rate of demand, different rates of demand, EPQ Model.				8
		Total			40 Hours

- 1. Operation Research: J K Sharma Macmillan India Ltd.
- 2. Operation Research, Prabhakar Pai, Oxford University Press
- 3. Operations Research, H.A.Taha, A.M.Natarajan, P.Balasubramanie, A.Tamilarasi, Pearson Education, Eighth Edition.
- 4. Engineering Optimization, S S Rao, New Age International Pvt Ltd, 2003.

Reference Books:

- 1. Operations Research, F.S.Hiller, G.J.Lieberman, Tata McGraw Hill, Eighth Edition, 2005
- 2. Operations Research, P.K.Gupta, D.S.Hira, S.Chand and Company Ltd, 2014.

C01	
C02	
C03	
CO4	
C05	
C06	

Туре	Code	Metrology, Quality, Control	L-T-P	Credits	Marks
РС	BTME-T-PC-601	and Reliability	4-0-0	3	150
Objectives	tolerances. 2. Study various thre	able to understand: basic principles and different ad profiles and measurement of ro and its various variables.			; errors,
Pre- Requisites	5. Study of renability				
Teaching Scheme	0	ectures with use of ICT as and whe n focus on problem solving activiti	-	ssions are p	olanned
Detailed Sylla	bus:				
Module		Topics			Hours
ModuleTopicsModule-1Introduction: Need of inspection, sources of errors, basic types of errors precision and accuracy. Method of estimating accuracy and precision, standard and their evolutions. Simple measurement tools: Rules, calipers, height gauges, micrometres, depth gauge dial indicator, slip gauges, sine bar.			8		
Module-II	Limit, fits and tolerance and gauge design: Basic concepts of limit fits and tolerance interchangeability and selective assembly, ISO system of tolerance, Taylor's principle of gauge design Gauge design-basic design rules for plug and ring gauges.			6	
Module-III	Interferometers: Types of light sources and interferometers, Types of scale and grading, optical flats. Screw thread measurement: Standard thread profiles, effective diameter, measurement of effective diameter by 2 wires and 3 wires methods. Best wire size.				9
Module-IVSurface roughness:Source of surface irregularities in manufacturing. Roughness and waviness RMC and CLA values measurement of surface roughness using Taylor Hobson's Talysurf.					5
Module V	Statistical quality control: Frequency distribution, process capability variables and attributes control chart (X & R chart) for variables, control chart for attributes (p,np and C chart) OC curve single and double sampling plan.				7
Module-VI	Reliability: Definition, relationship of reliability with maintainability and availability, failure data analysis- bath tub curve, system reliability, reliability improvement.				5
	1	Total			40 Hours

1. Engineering. Metrology by R. K. Jain, Khanna pub.

Reference Books:

- 1. A text book of metrology by M. Mahajan Dhanpat Rai and Co pvt Ltd.
- 2. Statistical quality control by M.Mahajan DhanpatRai and Co pvt Ltd.
- 3. Reliability Engineering. By L.S.S.Srinath East west press.

Course Outcomes: At the end of this course, the students will be able to:

C01	Identify and compare different type of errors, limits, fits and clearances as well as instruments necessary to measure the all those.	
CO2	Analyze the influence of all operating parameters of all errors, limits, fits and clearances.	
CO3	Understand the principles of measuring thread profiles and its operating parameters.	
CO4	Select the right type of components for particular measuring devices for the roughness and to find out its source.	
C05	Design different type of statistical quality control using variables and attributes.	
C06	Identify and compare different type of reliability with maintainability and availability as well as steps necessary for its improvement.	

- 1. Error analysis
- 2. Design of Limits, Fits and Clearance
- 3. Measurement of thread profiles.
- 4.Roughness measurement
- 5. Statistical quality control & Reliability.

		Maghamigal Vileration		Credits	Marks
PE	BTME-T-PE-602	Mechanical Vibration	4-1-0	3	150
Objectives	The students will be al To understand funda measurement and con	mentals of free and forced v	ibrations 8	a various te	echniques of
Pre-Requisites	Ordinary differential equations, Concepts of velocity, acceleration, force and e Newton's laws of motion, Matrix algebra			and energy,	
Teaching Scheme	0	tures with use of ICT as and who us on problem solving activities	-	, sessions ar	e planned to
Detailed Syllabu	IS:				
Module		Topics			Hours
ModuleTopicsModule-1Introduction to Mechanical Vibration, effect of vibration, S.H.M, Principle of Superposition applied to S.H.M. Beat phenomenon, Fourier analysis, Concept of Degree of Freedom, Elements of vibration & Types of vibration. Undamped free vibration of Single DOF systems-Modelling of vibrating systems, Evaluation of Natural frequency by differential equations, energy & Rayleigh's method, Equivalent systems.			r analysis, f vibration. f vibrating	8	
Module-II	Damped free vibration of Single DOF systems- Types of Damping, Equivalent viscous damping, resonance, Equation of motion of a SDOF having viscous damping, Concept of critical damping and its effect, study of vibration response of viscous damped systems for cases of under damping, critical damping and over damping, Logarithmic decrement.			6	
Module-III	Forced vibration of Single DOF systems-Forced vibration with harmonic excitation. Reciprocating & rotating unbalance mass, Vibration isolation and force transmissibility, motion transmissibility.Instrumentation for vibration analysis-Transducers and vibration pickup, Vibrometer, Accelerometer, Velocity pickup or Velometer			8	
Module-IV	Whirling of shaft with single disc and without damping, concept of critical speed and its effect on rotating shaft. Undamped vibration of two DOF systems – Free vibration spring coupled and mass coupled systems, longitudinal, Torsional & Transverse of two DOF systems, influence coefficient technique, Undamped vibration absorber.				6
Module V	Introduction to multi-DOF systems- Normal mode vibration, coordinate coupling-closed coupled and far coupled systems. Orthogonality of mode shapes. Method of matrix iteration, Holzer & Stodala method.				6
Module-VI	Torsional vibrationof two, three and multi-rotor systems. Dunkerley'slowerboundapproximationContinuous Systems-Vibrationof strings, longitudinal vibration of rods,torsional vibration of rods, Transverse vibration of Euler-beams.			6	

Total	40 Hours
-------	-------------

1. Theory of vibration with application-W.T Thomson & M D Dahleh, Pearson education.

2. Introduction to Theory & practice of mechanical vibration – J S Rao &K.Gupta-New age

Reference Books

1. Mechanical vibration-S.S Rao, Pearson education.

2. Mechanical vibration-V.P Singh, Dhanpat Rai Pvt.ltd

Course Outcomes: At the end of this course, the students will be able to:

C01	Understanding the vibrating systems & effects of energy-removal mechanisms i.e. damping.
CO2	Estimate natural frequency for single DOF Undamped & damped free vibratory systems
CO3	Examining vibration measuring instruments for industrial / real life applications.
CO4	Estimate natural frequencies, mode shapes for 2 DOF Undamped free vibratory systems
C05	Compute the natural frequencies and mode shapes of a multi degree of freedom system
C06	Select the numerical methods to determine natural frequencies of the beam and rotor systems.

- 1. Utensil/Tool Design for people with Parkinson's diseases
- 2. Vibration Analysis of a Half-Car Model.
- 3. Hot spot technique in cricket.
- 4. Mass Damper in Automobile
- 5. Tuned mass Damper
- 6. Pass by Noise controller by Hybrid Muffler
- 7. Shock Absorber for Rickshaw
- 8. Smart Pump

Туре	Code		L-T-P	Credits	Marks
PC	BTME-T-PC-603	Heat Transfer	3-1-0	3	150
Objectives	2.Understand the concep	to: t of conduction heat transfer, t of convection heat transfer t of radiation heat transfer, fins &	·	jer	
Pre-Requisites	Basic thermodynamics E				
Teaching Scheme	-	res with use of ICT as and wh problem solving activities.	en required, s	essions are pl	lanned to be
Detailed Syllabus	:			.	
Module		Topics			Hours
Module-1	Modes of heat transfer: conduction, convection, and radiation, Mechanism & basic laws governing conduction, convection, and radiation heat transfer; Thermal conductivity, Thermal conductance &Thermal resistance, Contact resistance, convective heat transfer coefficient, radiation heat transfer coefficient, Electrical analogy, Mechanism of conduction: Derivation of the generalized heat conduction equation in Cartesian coordinates, polar cylindrical and polar spherical coordinates. Different types of boundary conditions encountered in heat conduction problems. Solution of the one-dimensional steady state heat conduction equation with constant thermal conductivity and without internal heat generation in Cartesian coordinates. Extension of the solution to composite walls by electrical analogy. Thermal contact resistance, Effect of variable thermal conductivity on temperature distribution in plane wall.			2	
Module-II	Solution of the one-dimensional steady state heat conduction equation with constant thermal conductivity and without internal heat generation in Cylindrical and Spherical coordinates. Extension of the solution to composite cylinders/spheres by electrical analogy. Heat transfer in extended surfaces (pin fins) without heat generation, long fin, short fin with insulated tip and without insulated tip and fin connected between two heat sources. Fin efficiency and fin effectiveness. Conduction in solids with negligible internal temperature gradient (Lumped heat analysis).			8	
Module-III	Introduction to convective flow - forced and free. Conservation equations for mass, momentum and energy for 2-dimensional convective heat transfer in case of incompressible flow, Hydrodynamic and thermal boundary layers for flow over a flat plate. Critical Reynolds number; general expressions for drag coefficient and drag force Reynolds Colbourn analogy. Thermal boundary layer; general expression for local heat transfer coefficient.				

Module-IV	Average heat transfer Coefficient; Nusselt number. Flow inside a duct- velocity boundary layer, hydrodynamic entrance length and hydrodynamically developed flow; flow through tubes (internal flow).: Dimensional analysis for forced and free convection, Nusselt number. Concept of thermal boundary layer, Prandtl number, Expressions for local and average values of heat transfer coefficients for a flat plate. Experimental correlations for forced and free convection for various geometries.		
Module V	Introduction, Radiation properties, definitions of various terms used in radiation heat transfer; Absorptivity, reflectivity & transmissivity. Emissive power & emissivity, Kirchoff's identity, Planck's relation for monochromatic emissive power of a black body, Derivation of Stefan- Boltzmann law and Wien's displacement law from Planck's relation, Radiation shape factor, Relation for shape factor and shape factor algebra. Heat exchange between blackbodies through non-absorbing medium. Gray bodies and real bodies, Heat exchange between gray bodies. Radiosity and irradiation.	4	
Module-VI Introduction, Types of heat exchanger, The overall heat transfer coefficient and fouling factors, LMTD and - NTU analysis of heat exchangers.		6	
	Total	34 Hours	

1. Engineering Heat and Mass Transfer, Mahesh M. Rathore, Laxmi Publiations

2. Heat and Mass Transfer: A Practical Approach, Y.A.Cengel, Tata Macgraw Hills Education Private Limited

3. Heat Transfer by P.K. Nag, TMH

Reference Books:

1. Fundamentals of Engineering Heat and Mass Transfer: R.C.Sachdeva, New Age International Publishers, 4th Edition

2. Heat and Mass Transfer: Domkundwar and Arora, Danpatrai and sons

3. Heat Transfer: R.K.Rajput, Laxmi Publications.

Course Outcomes: At the end of this course, the students will be able to:

C01	To know about the different modes of heat transfer
CO2	To understand various thermal properties of different material
CO3	To analyze convective heat transfer in 1-Dimensional & 2-Dimensional form
CO4	To study dimensional analysis of forced & free convection with different experimental co-relations
C05	To study the fundamental laws of radiations & its application
C06	To design the heat exchanger devices using heat transfer.

Experiential Learning:

1. To visualize different modes of heat transfer

2. To understand the effectiveness of fins for higher rate of cooling

3. Demonstration of Natural Convection

4. To study the significance of radiation for different thermodynamic application

5. To understand the different types of heat exchanger

Туре	Code	Essence of Indian Knowledge	L-T-P	Credits	Marks	
		Tradition – II	2-0-0	0	100	
	The student	s will be able to understand:				
Objectives	1. Defining t	1. Defining the concepts of Indian tradition Knowledge				
objectives	2. Understar	2. Understanding the importance of roots of knowledge system				
	3. Implemen	ting the traditional knowledge to the day-	•to-day life	,		
Pre- Requisites						
Teaching Scheme		sroom lectures with use of ICT as and wh re with focus on problem solving activities		ed, sessions ar	e planned to	
Detailed Syllab	ous:					
Module		Topics			Hours	
Module-1		roduction to Traditional Knowledge (Definition TK its Nature, practeristics and scope).			5	
Module-II	Protection and significance of Traditional knowledge (Significance of TK Protection, Value of TK, role of Govt.to harness TK)			5		
Module-III	Legal Frame work and TK (Forest Dwellers Forest right act 2001, 2002, 2006.)			5		
Module-IV	Traditional knowledge and Intellectual property (Systems & Legal concepts for the protection of traditional knowledge)			5		
Module V	Traditional knowledge and Engineering (Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge)			5		
Module-VI	Managemen (Traditional	tance of conservation and sustainable development of environment ement of Biodiversity tional societies dependence on environment, Food security of the y and protection of TK)			5	
		Total			30 Hours	

Text Books:

Reference Books:

C01	Identify the concept of Traditional knowledge and its importance.
CO2	Explain the need and importance of protecting traditional knowledge.
CO3	Illustrate the various enactments related to the protection of traditional knowledge.
CO4	Interpret the concepts of Intellectual property to protect the traditional knowledge.
CO5	Explain the importance of Traditional knowledge in Agriculture and Medicine.

Туре	Code		L-T-P	Credits	Marks	
AEC	BTSC-T-AEC-604	EET-4	4-0-0	1	100	
	The students will be able to und	erstand:				
	1. To provide job related knowle	edge to the stude	nts			
Objectives	2. To bridge the gap between sk for by the organization.	ills possessed by	the students	and the abilities the	nat is looked	
	3.To develop an attitude of constant self-improvement throughout their career					
Pre- Requisites	To help students practice and u	nderstand the var	rious compan	y pattern tests.		
Teaching Scheme	Regular classroom lectures with interactive with focus on proble			red, sessions are p	lanned to be	
Detailed Sylla	bus:					
Module		Topics			Hours	
Module-1	Engineering Mechanics: Free- applications, virtual work	body diagrams ar	nd equilibriun	n; friction and its	5	
Module-II	Kinematics and dynamics of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations; Mechanics of Materials.				5	
Module-III	Theory of Machines: Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.			5		
Module-IV	Vibrations: Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds				5	
Module V	Machine Design: Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.					
Module-VI	Fluid Mechanics: Fluid properties; fluid acceleration; differential equations of continuity and momentum; Bernoulli's equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings; basics of compressible fluid flow.			5		
	Το	hal			30	
	10	lai			Hours	

1. Strength of Materials by James M Gere, Stephen P Timoshenko

- 2. The Theory of Machines by S S Ratan
- 3. Engineering Mechanics- New Age International by S S Bhavikatti
- 4. A Textbook of Fluid Mechanics by R.K. Bansal

Reference Books:

- 1. Mechanical Vibrations by G K Grover
- 2. Fluid Mechanics by Cengel & Cimbala.

C01	To help students explore their values and career choices through individual skill assessments.
CO2	To make realistic employment choices and to identify the steps necessary to achieve a goal.
C03	To encourage students to make smarter career decisions in accordance with their interests, abilities and prepares them for the future.
C04	To disseminate knowledge and appropriate skill practices through recognized systems of training and testing.
C05	To Match the objectives with company goals.

Туре	Code	Metrology, Quality Control &	L-T-P	Credits	Marks		
PC	BTME-P-PC-601	Reliability Lab	0-0-2	1	150		
	Students will able t	0:					
	1. Hands on experience in precise measurement techniques						
Objectives	2. Quality assurance practices,						
	3. Reliability asseement of engineering components.						
Pre-Requisites	Knowledge of Metr	Knowledge of Metrology, Quality control & Reliability Engineering theory.					
Teaching	Laboratory practices with use of assisting tools as and when required, sessions are						
Scheme	planned to be inter	active with focus on practical activition	es.				
Detailed Syllabus	5:						
Module				Hours			
Experiment-1	Hardness testing using Rockwell and Vickers's hardness testers.3			3			
Experiment-2	Optical Profile measurement. 3			3			
Experiment-3	Measurement of thread parameters 3			3			
Experiment-4	Force and torque measurement.3			3			
Experiment-5	Inspection of geometric features using Coordinate Measuring Machine (CMM).			3			
Experiment-6	Measurement of surface roughness.			3			
Experiment-7	Calibration of Vernier Calipers and micrometers.			3			
Experiment-8	Study of linear and angular measurements.				3		
Experiment-9	Flatness measurement using dial indicator and surface plate.				3		
Experiment-10	Experiment-10 N-n-destructive testing (NDT) methods: Ultrasonic testing.				3		
Total					30		
Total					Hours		

C01	Proficiency in measurement techniques	
CO2	Understanding of calibration and precision.	
C03	Application of quality control methods.	
C04	Reliability of assessment skills.	
C05	Non-destructive testing of competence.	
C06	Integration of theory and practice.	

Туре	Code	Heat Transfer Lab	L-T-P	Credits	Marks
РС	BTME-P-PC-602	Heat I ransfer Lab	0-0-3	1	150
Objectives	 Students will able to: 1. Understand the fundamentals of heat transfer processes. 2. Calculate the quantity of heat transfer in various processes. 3. Experience the principles of heat transfer in various equipments. 				
Pre- Requisites	Fundamentals of heat transfer.				
Teaching Scheme	Laboratory practices with use of assisting tools as and when required, sessions are planned to be interactive with focus on practical activities.				
Detailed Syllab	us:				
Module	Topics				Hours
Experiment-1	nent-1 Determination of Thermal conductivity of composite slab			3	
Experiment-2	xperiment-2 Determination of heat transfer coefficient in natural/forced convention.			onvention.	3
Experiment-3	eriment-3 Determination of surface emissivity				3
Experiment-4 Performance test on parallel flow and counter flow heat exchanger				inger	3
Experiment-5	Experiment-5 Efficiency and effectiveness of fins (Natural /Forced convection)			on)	3
Experiment-6	Determination of Critic	cal heat flux during boiling h	neat transfe	r.	3
Experiment-7 Verification of Stefan Boltzmann's law.					3
Experiment-8	Measurement of therm	nal conductivity of metal roc	1		3
Experiment-9	Determination of them	nal conductivity of insulatin	ng powder.		3
Total					27 Hours

C01	Learn the basic principles of conduction, convection and radiation.
CO2	Understand the mode of heat transfer in different equipment.
CO3	Explain the mode of heat transfer in industrial equipments.
C04	Design the various components of heat transfer equipments.
C05	Compare the performance of different types of heat transfer modes in various components.
C06	Design of heat exchanger and its application in engineering equipments.

Туре	Code	Project-IV	L-T-P	Credits	Marks
PS	BTME-P-PS-601	Floject-Iv	0-0-3	2	150

Course Outcome:

- 1. Understand: Explain the principles and significance of material testing and mix design in civil engineering projects.
- 2. Apply: Perform standard tests on aggregates, bitumen, and soil to evaluate their properties and suitability.
- 3. Analyze: Interpret test results to assess material performance under specific construction conditions.
- 4. Evaluate: Compare alternative materials and methods to optimize construction practices.
- 5. Create: Develop mix designs using the Marshall Method to meet project specifications.
- 6. Demonstrate: Present findings and practical insights from material testing and mix design processes effectively.