Syllabus for B. Tech 1st, 2nd and 3rd Year 2023 Admission Batch

Computer Engineering

(Approved by Academic Council and Board of Studies)

GIFT Autonomous, Bhubaneswar

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela)
Recognized under section 2(f) of the UGC act, 1956
At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pincode: 752054

1st Year Course Structure

First Semester Second Semester						Second Semester						
			Theory						Theory			
SI. No.	Category	Course Code	Course Title	WCH L-T-P	Credit	SI. No.	Catego ry	Course Code	Course Title	WCH L-T-P	Credit	
1	BS	BTBS-T-BS-101	Mathematics I	4-0-0	3	1	BS	BTBS-T-BS-201	Mathematics II	4-0-0	3	
2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2	2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2	
3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical Engg./ Basic Electronics Engg.	3-0-0	2	3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical Engg/ Basic Electronics Engg./	3-0-0	2	
4	ES	BTBS-T-ES-103	Basic Programming Skills	4-1-0	3	4	ES	BTBS-T-ES-203	Programming Using Data Structure	4-1-0	3	
5	ES	BTBS-T-ES-104/ BTBS-T-ES-105	Basic Mechanical Engg/ Basic Civil Engineering	3-0-0	2	5	ES	BTBS-T-ES-104/ BTBS-T-ES-105	Basic Mechanical Engg/ Basic Civil Engineering	3-0-0	2	
6	HS	BTBS-T-HS-101	English for Engineers-I	2-0-0	1	6	HS	BTBS-T-HS-201	English for Engineers-II	2-0-0	1	
7	МС	BTBS-T-MC-101/ BTBS-T-MC-102	IT & IS /Constitution of India	2-0-0	0	7	MC	BTBS-T-MC-101/ BTBS-T-MC-102	IT & IS /Constitution of India	2-0-0	0	
		•	Total Hours/ Credit (Theory)	23	13				Total Hours / Credit (Theory)	23	13	
			Practical	I							1	
1	1 BS BTBS-P-BS-102/ Elements of Engineering Physics Lab/ Applied			0-0-2	1				Practical	al		
	700		Chemistry Lab			1	BS	BTBS-P-BS-102/ BTBS-P-BS-103	Elements of Engineering Physics Lab/ Applied	0-0-2	1	
2	ES	BTBS-P-ES-101/ BTBS-P-ES-102	Basic Electrical Engg. Lab/ Basic Electronics Engg. Lab	0-0-2	1	2	ES	BTBS-P-ES-101/	Chemistry Lab Basic Electrical Engg. Lab/	0-0-2	1	
3	ES	BTBS-P-ES-103	Basic Programming Skill Lab	0-0-3	1.5			BTBS-P-ES-102	Basic Electronics Engg. Lab			
						3	ES	BTBS-P-ES-203	Programming Using Data Structure Lab	0-0-3	1.5	
4	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Basic Mechanical Engg lab/ Basic Civil Engineering lab	0-0-2	1			DWDG D DG 404/				
	700	BTBS-P-ES-104/	Fundamental Complian	0.00	4.5	4	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Basic Mechanical Engg lab/ Basic Civil Engineering lab	0-0-2	1	
5	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Engineering Graphics with AutoCAD /	0-0-3	1.5							
6	HS	BTHS-P-HS-101	Workshop Practice-I English for Engineers Lab-I	0-0-2	1	4	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Engineering Graphics with AutoCAD / Workshop Practice-I	0-0-3	1.5	
						5	HS	BTBS-P-HS-201	English for Engineers Lab-II	0-0-2	1	
7	PS	BTPS-P-PS-101	Project - I	0-0-2	1		113	B1B31 113 201	English for Engliseers Bab ii	002	1	
						6	PS	BTPS-P-PS-201	Project - II	0-0-2	1	
			Total Hours/ Credit (Practical)	16	8							
		Grand T	otal Hours/ Credit (Practical)	39	21				Total Hours/ Credit (Practical)	16	8	
						Grand Total Hours/ Credit (Practical)				39	21	

CURRICULUM STRUCTURE

BTECH – Computer Engineering, SYLLABUS- Batch--2023-24, SECOND YEAR

THIRD SEMESTER								
Sl. No.	Category	Course Code	Course Title	L-T-P	Credit			
1	BS	BTBS-T-BS-303	Mathematics for Computer Science	3-0-0	3			
2	PC	BTCS-T-PC-301	Database Management System	3-0-0	3			
3	OE	BTEC-T-OE-301	Digital Logic Design	3-0-0	3			
4	HS	BTBS-T-HS-301	Organizational Behavior	3-0-0	3			
5	ES	BTCS-T-ES-301	Object Oriented Programming JAVA	1-0-0	3			
6	AE	BTSC-T-AE-301	Ability Enhancement Training -B	1-0-0	1			
7	MC	BTMC-T-MC- 302	Environmental Engineering	1-0-0	0			
Tota	l Credit (The	eory)			16			
Prac	tical	1	Database					
1	PC	BTCS-P-PC-301	Management System Lab	0-0-3	1			
2	OE	BTEC-P-OE-301	Digital Logic Design Lab	0-0-3	1			
3	EC	BTCS-P-ES-301	Object Oriented Programming Lab	0-0-3	1			
4	PS	BTCS-P-PS-301	SEMINAR-1	0-0-2	1			
5	SC	BTSC-P-SC-301	Evaluation of Summer Internship -I	0-0-2	2			
Tota	l Credit (Pra	actical)	1		6			
Tota	l Semester C	Credit			22			

	FOURTH SEMESTER							
Sl. No.	Category	Course Code	Course Title	L-T-P	Credit			
1	PC	BTCS-T-PC-401	Design and Analysis of Algorithms	3-0-0	3			
2	PC	BTCS-T-PC-402	Computer Organization & Architecture	3-0-0	3			
3	PC	BTCS-T-PC-403	Programming With Python	3-0-0	3			
4	HS	BTBS-T-HS-401	Engineering Economics and Costing	2-0-0	3			
5	OE	BTEC-T-OE- 401	Digital Signal Processing	3-0-0	3			
6	00	BTCS-T-OO-401	NPTEL Course	1-0-0	2			
7	AE	BTSC-T- AE- 401	Ability Enhancement Training -C	1-0-0	1			
8	MC	BTMC-T-MC- 302	Essence of Indian knowledge and tradition	1-0-0	0			
Tota	l Credit (Th	eory)			18			
Prac	tical							
1	PC	BTCS-P-PC-401	Design and Analysis of Algorithms Lab	0-0-3	1			
2	PC	BTCS-P-PC-402	Computer Organization & Architecture Lab	0-0-3	1			
3	PC	BTCS-P-PC-403	Programming With Python Lab	0-0-3	1			
4	PS	BTCS-P-PS-401	Project-III	0-0-2	2			
Tota	l Credit (Pra	actical)			5			
Tota	l Semester C	Credit			23			

Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire co mpetence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programs defined by NBA are:

- PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. **Problem Analysis**: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, n a t u r a l sciences, and engineering s c i e n c e s.
- PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legaland culturalissues and the consequent responsibility relevant to the professional engineering practice.
- PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. **Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

LTTutorial

P Laboratory / Practical / Sessional

WCH Weekly Contact Hours

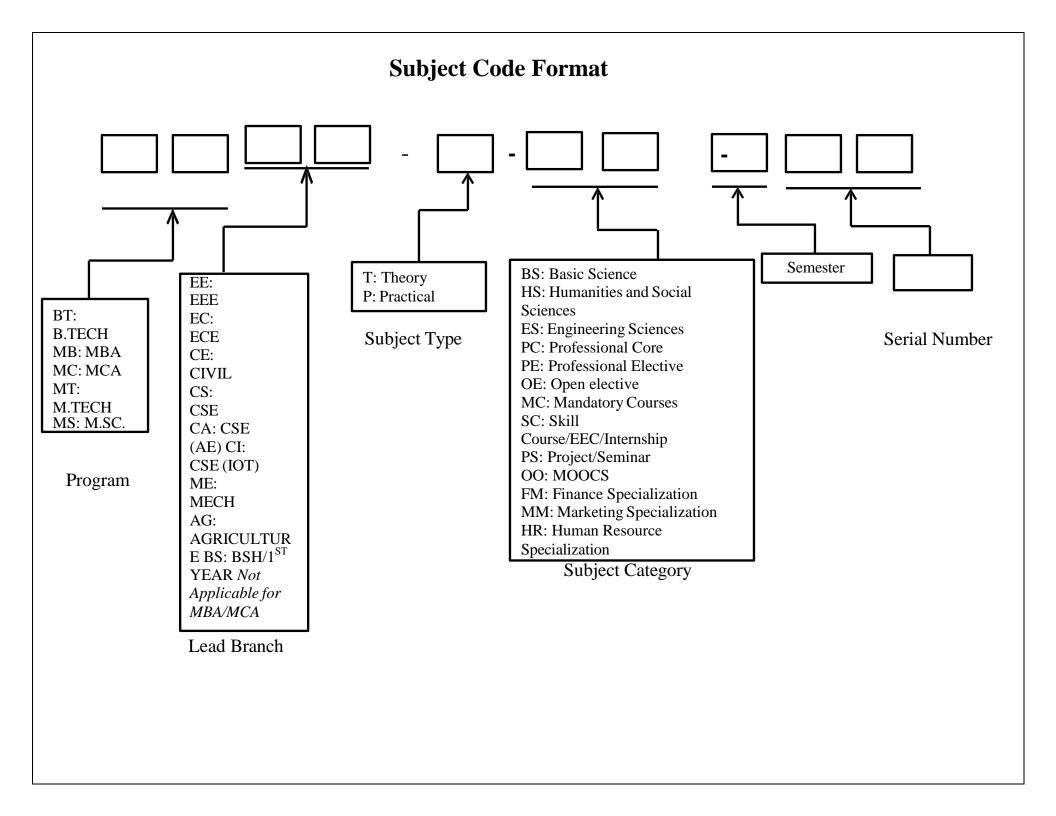
BS Basic Sciences

HS Humanities & Social Sciences (including Management)

ES Engineering S c i e n c e s

PC Professional Core

PE Professional Elective


OE Open Elective

MC Mandatory Course

SC Skill Course

EEC Employment Enhancement Course

SEPD Skill Enhancement and Personality Development

Evaluation process

1. Evaluation Process of Theory Subjects:

Sr No	Type of Test	Mark	Frequency	Total Mark	Reduced Mark
1	Modular Test	25	3	75	50
2	Online Quiz Test	10	6	60	10
3	Assignment	10	2	20	10
4	Subject Specific Project	15	1	15	15
5	Attendance	15	1	15	15
TOTAL	<u>.</u>			155	100
Pass M	45				

Proposed External Examination (B. Tech, Autonomous)						
Sr No	Type of Test	Mark	Frequency	Total Mark		
1	End Semester Examination	100	1	100		
Pass Ma	ark	I	1	35		

2. Evaluation Process of Practical Subjects:

Components	Marks	Frequency	Assigned To
Attendance	10	Closing of Instruction	To be retrieved from CMS
Daily Performance & Viva-voce	40	On the day of Experiment	Concerned Faculty (Upload in CMS in weekly basis)
Lab Record	20	On the day of Experiment	Concerned Faculty
End-Semester Lab Test	30	1	At the end of the semester as per the schedule published by Examination Cell
Total	100		

3. Process of Skill Courses:

Evaluation

Components	Marks	Frequency	Assigned To
End-Semester Examination	100	1	Examination Cell/ Concerned Faculty
Total	100		

4. Evaluation Process of Mandatory Courses:

Components	Marks	Frequency	Assigned To
In-Semester Evaluation	100	1	Examination Cell/ Concerned Faculty
Total	100		

Contents

First Year B.Tech

Curriculum Structure

B.Tech (1st Semester & II nd Semester)

Item	Page No
Curriculum Structure	2
Evaluation Process	8
Details Syllabus	
Theory	
Introduction to Mathematics I	11-12
Elements of Engineering Physics	13-15
Applied Chemistry	16-18
Basic Electrical and Electronics Engineering	19-21
Basic Mechanical and Civil Engineering	22-24
Basic Programming Skills	25-26
Communicative English-I	27-28
SEPD-I (Skill Enhancement and Personality Development)	29-30
IT & IS /Constitution of India	31-33
Constitution of India	34-35
Introduction of Mathematics-II	36-37
Programming Using Data Structure	38-39
Communicative English-II	40-41
SEPD-II (Skill Enhancement and Personality Development)	42-43
Practical	
Elements of Engineering Physics Lab	44-45
Applied Chemistry Lab	46-47
Basic Electrical and Electronics Engineering Lab	48-49
Basic Mechanical and Civil Engineering Lab	50-51
Basic Programming Skills lab	52
Communicative English Lab-I	53-54
Engineering Graphics with AutoCAD	55-56
Workshop Practice-I	57-59
Programming Using Data Structure Lab	60-61
Communicative English Lab-II	62

Type	Code	Mathematics - I	L-T-P	Credits	Marks
BS	BTBS-T-BS-111	Wathematics - 1	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of ordinary differential equations and applications, solution of system of linear equations using matrix, Eigen vectors & Eigen values of matrices with applications.
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
	Solution of first order differential equations, Linear equation, Bernoulli's equation.	,
Module-1	Second order differential equations with constant coefficients, Euler-Cauchy equation.	12 Hours
	Experiential learning-Applications of differential equations in 2D using MATLAB.	
	Introduction to vector space, sub space, linearly independent and linearly dependent	į
Module-2	vectors, solution of system of linear equations, Gauss elimination, and Gauss-Jordan	13 Hours
	methods, Determinant, Inverse of a matrix, Rank of a matrix. Basics of linear	•
	transformation, Eigen values and Eigen vectors.	
	Experiential learning- Blending system of linear equations in Gauss elimination	1
	method, Computation of Eigen values and Eigen vectors using MATLAB.	
	Vector Differential Calculus: Vector and Scalar functions and Fields, Derivatives,	
Module-3	Curves, Tangents and Arc length, Gradient, Divergence and Curl with applications.	8 Hours
	Average, Problems on Ages, Percentage, Profit and Loss, Ratio and Proportion, Time	
Module-4	and Work, Time and Distance, Simple and Compound Interest.	12 Hours
	Total	45 Hours

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, Quantitative Aptitude For Competitive Examinations, S. Chand publication.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.
- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. A. Sharma, Quantitative Aptitude, Mc Graw Hill Education Pvt. Ltd
- R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley Publication

Online Resources:

- 1. https://nptel.ac.in/courses/111106100
- 2. https://nptel.ac.in/courses/111105121
- 3. https://nptel.ac.in/courses/111104137
- 4. https://nptel.ac.in/courses/111107108
- 5. https://nptel.ac.in/courses/111106051
- 6. https://nptel.ac.in/courses/111105134

Course Outcomes: At the end of this course, the students will be able to:

CO1	Find the general solution of first and second order ordinary differential equations and use the general solution to find the specific solution for given initial value problems.
CO2	Solve and demonstrate various physical models through second order differential equations.
CO3	Use the understanding of matrix algebra to solve systems of linear equations, harmonics problems, population models etc. arising in various engineering fields.
CO4	Demonstrate knowledge and applications of Eigen value problems related to engineering disciplines.
CO5	Application of mathematics for engineers through MATLAB.
CO6	Know the basic concepts of quantitative aptitude to meet real life requirements.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-102	Elements of Engineering Physics	4-0-0	2	150

Objectives	1. To expose students to the fundamental principles and laws of mechanics in
	Physics to understand the types of motion.
	2. To analyze the concepts of mechanics, oscillations, waves and optics to prepare
	the students for advanced level courses.
	3. To demonstrate the ability to identify and apply the appropriate analytic,
	numerical, and mathematical reasoning, to situations of the physical world.
	4. To adaptability to new developments in science and technology.
Pre-Requisites	Class 12 th level Physics course
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are
	planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
	Oscillation, waves and Mechanical Properties	
Module-1	Simple, damped and forced oscillations, resonance, coupled oscillations.	12 Hours
	Wave and wave equation, Superposition of waves.	
	Interference, Young's double slit experiment, Newton's rings, Diffraction,	
	Fraunhofer diffraction by single slit, Diffraction Grating, Polarization, Malus'	
	Law, Brewster's Law.	
	Mechanical Properties of Matter Stress, strain, Hooke's law, elastic constants	
	and their relations, stress-strain diagrams	
	Experiential learning:- Different Types of Oscillator circuits	
	(Using inductor and capacitor frequency will be determined)	
Module-2	Electromagnetism and Concept of Quantum mechanics	
	Divergence, Curl and Gradient, Line, Surface and volume integral, Gauss divergence theorem, Stokes theorem (Only Statements, no proof), Gauss's law, Ampere's law and Faraday's law of electromagnetic induction, Maxwell's equations in integral and differential form.	10 Hours
	Black body radiation, Planck's law, photo electric effect (concept and equation), Matter waves, de Broglie hypothesis, Heisenberg's Uncertainty Principle and its application, Schrodinger's wave equation – Time independent and Time dependent equations, Free particle, Particle in a one dimensional rigid box.	
	Experiential learning:-Soft image using quantum Machine learning Algorithm	

Module-3	Engineering Materials	10 Hours
	Semiconducting Material: Defects in solids (Elementary idea), Concept of	
	energy bands in solids, carrier concentration and conductivity in semiconductors	
	with temperature dependence, construction and working of PN junction diode.	
	Dielectric materials, Dielectric Polarization, Dielectric Breakdown, Dielectric	
	constant and loss, Electromagnetic wave in dielectric medium.	
	Superconducting materials: Superconductivity, Critical parameters, Meissner	
	effect, Type I & Type II superconductors, BCS theory, applications of super	
	conducting materials.	
	Nano material: Classifications, Quantum confinement, surface to volume ratio,	
	Graphene and its structure, Application.	
	Experiential learning: Magnetic energy storage devices, Construction of battery	
	and diode.	
	Quantum Statistics and Optoelectronic devices	
Module-4	Statistical Mechanics: Statistical distributions: Maxwell-Boltzmann, Molecular	12 Hours
	Energies in an ideal gas, Bose-Einstein and Fermi-Dirac statistics.	
	Laser: Spontaneous and stimulated emission, Einstein's coefficients, Population	
	inversion, Light amplification, Basic laser action, Types of laser, Ruby and He-	
	Ne lasers, applications.	
	Fiber Optics: Optical fiber and its principle, acceptance angle, numerical	
	aperture for step and graded index fibers, attenuation mechanism in optical	
	fibers, applications of optical fibers.	
	Experiential learning: Optical fiber communication, LED	
	Design different types of sensors using optical fiber.	
	1	

Text Books:

- T1. Principles of Engineering Physics-Vol. I and II by M. Khan & S. Panigrahi, Cambridge university Press
- T2. Physics for Engineering degree students, B. B Swain & P. K Jena.

Reference Books:

- R1. Electronic Devices and Circuits Millman, Halkias and Jit, Tata McGraw Hill
- R2. Concepts of Modern Physics: A Beiser, S Mahajan, S. Raichoudhury
- R3. Optics: A. K. Ghatak
- R4. Introduction to Solid State Physics: S. O. Pillai
- R5. Properties of matter: D. S. Mathur
- R6. Heat and Thermodynamics: N Subramaniam

Online Resources:

- 1. https://nptel.ac.in/courses/122106027
- 2. https://nptel.ac.in/courses/115105121
- 3. https://onlinecourses.nptel.ac.in/noc22_ph06/preview
- 4. https://nptel.ac.in/courses/115105097
- 5. https://nptel.ac.in/courses/108106161

Course Outcomes: At the end of this course, the students will be able to:

CO1	Understand the concepts of waves, oscillation and its significance.
CO2	Acquire skills to apply formulas of optics and wave physics.
CO3	Gain Acquire Knowledge of basic concepts of electric and magnetic fields.
CO4	Develop the concept of different engineering material and their applications.
CO5	Understand the basic knowledge of thermodynamic and use them to solve practical problems.
CO6	Develop a comprehension of the current basis of broad knowledge in Modern physics.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-103	Applied Chemistry	4-0-0	2	150

Objectives	The objective of this course is to make students learn about basic concepts and application of Chemistry from Industrial, Pharmaceutical, research, agriculture and life science point of view.
Pre-Requisites	A fundamental knowledge of Quantum, Inorganic chemistry, along with basics of Periodic table, properties of metal are to be clear.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Module-1	Quantum Mechanics and its application: Failure of classical mechanics and introduction to quantum mechanics, Photoelectric effect, Postulates of Quantum mechanics, Schrodinger's wave equation (Derivation not required), Particle in One dimensional box, Significance of eigen value and eigen function. Zero point energy.	12 Hours
	Phase rule and its application : Definition of phase, component and degree of freedom, one component system, Water, Sulphur system, Curves and triple points, meta stable triple point, Two component alloy systems: Bi-Cd, eutectic point	
	Experiential learning:- Preparation of alloys, Isolation of Salts from Mixtures (By adjusting Temperature and Composition)	
Module-2	Electro Chemistry and its application: Electro chemical cells, Dry cell, Alkaline battery, Ni-Cd battery, Li-ion Battery, Pb-acid storage cell Fuel Cells: Definition, Different types of fuel cell, Hydrogen blue fuel cell, FCEVs	13 Hours
	Corrosion: Theory and mechanism of corrosion, Types, differential aeration corrosion, water line corrosion, Pitting, stress, SCC, galvanic corrosion, Caustic embrittlement, Factors affecting corrosion, Corrosion Control, corrosion inhibitors: Cathodic protection, Metal coatings.	
	Experiential learning:- Preparation of dry cell	
	(Using metal ,carbon rod and insulating Separator)	

Total		45 Hours
	Experiential learning:- CNTs are synthesized by thermal CVD method using hydrocarbon gas as carbon source (Using Quartz tube and RF heater)	
Module-4	Nano materials: Introduction, Classification, characteristics, 0D,1D, 2D Nanomaterials, Synthesis: Top Down & Bottom Up approach, Application to Pharmaceutical and Research.	8 Hours
	Experiential learning:- Preparation of Hexamethyelene diamine Adipic Acid(Nylon 66) Polymer. (Using Adipoyl Chloride)	
	Polymer : Degree of polymerization, Thermosetting and thermoplastic polymer with examples: Polethene, PVC, Nylon-6, Teflon and their applications, Rubber: Natural rubber, Vulcanized rubber.	
Module-3	12 Hours	

Text Books:

- T1. Theory & Practical's of Engineering Chemistry, By Shashi Chawla, Publisher: Dhanpati Rai & CO.(Pvt.) Ltd
- T2. Engineering Chemistry Vol-I & II, Author: Jain & Jain, Publisher: Dhanpati Rai Publishing Company.
- T3. Engineering Chemistry, Author: Prasant Rath, 2015, Cenage Learning India Pvt, Ltd
- T4. Textbook on Engineering chemistry. Author: Achyutananda acharya & Biswit Samantaray, publisher: Pearson

Reference Books:

- R1. Theory & practical's of engineering chemistry, by Shashi Chawla, publisher: Dhanpati Rai & CO.(Pvt.) Ltd
- R2. Engineering chemistry vol-i & II, author: Jain & Jain, publisher: Dhanpati Rai publishing company.
- R3. A textbook of engineering chemistry, author: Dr. Rajshree Khare publisher: S.K. Kataria & sons.
- R4. Textbook of nanoscience and nanotechnology. Mcgraw Hill Education (India) Pvt. Ltd., 2012.
- R5. Nanostructures & Nanomaterials: synthesis, properties and applications- g. Cao and Y. Wang, world scientific

 Pvt.

Ltd.; 2nd edition

Online Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cells
- 2. https://www.britannica.com/science/polymer
- 3. https://www.niehs.nih.gov/health/topics/agents/sya-nano/index.cfm
- 4. https://afdc.energy.gov/vehicles/fuel_cell.html
- 5. https://www.researchgate.net/publication/258761372

Course Outcomes: At the end of this course, the students will be able to:

CO1	Describe graphs of one and two component system (curves) and their characteristics.			
CO2	Solve quantum energy related problem and determine the quantized energy of different energy levels.			
CO3	Explain the methodology of corrosion occurrence in different cases and its prevention to optimum level.			
CO4	Explore the concepts and methods of blending of fuels with better Cetane and Octane number.			
CO5	Use the concept of Polymer Synthesis, Nano material synthesis methodologies and types of nanomaterial.			

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-101	Basic Electrical Engineering	3-0-0	2	150

Objectives	To expose to the field of electrical &electronics engineering, and to acquire the fundamental knowledge in the field.			
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education			
0 0.	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.			

Module-#	Topics	Hours	
Module-1	Introduction to Electrical power system: An overview of Electrical Engineering, Sources of energy, steam, hydro and nuclear power generation, Renewable source of Power generation and general structure of electrical Transmission, Distribution, and Utilization & Conservations. DC Circuits: Study of Electrical Elements (R, L, C). Ohm's Law. Series & Parallel combination. KCL, KVL, Nodal & Mesh analysis. Star Delta Conversion. Superposition theorem, Thevevnin's theorem, Experiential learning:- Power generating station (Construction of Small hydro plant, Biomass plant) LED light using solar energy.	10 Hours	
Module-2	AC fundamentals: Sinusoidal Wave form, Peak, RMS, Average value. Concept of Real Power, Reactive Power, Apparent Power &Power factor. Analysis of 1-phases AC circuit. Introduction to 3- phase system. Line & Phase quantity in star and delta connection, Analysis of 3- phases balanced AC circuit. Concept of resonance in series and parallel R-L-C circuits. Magnetic circuits: Electro magnetism, simple magnetic circuit, magnetic material, B-H curve. Experiential learning:- Design of Magnetic Circuits to learn self induction & Mutual inductance.		
Module-3	Electrical Machines: Construction, working principle & Application of DC generator, DC Motor, 3 phase & single phase induction motor, Alternator & Special Motors (Stepper & BLDC) Experiential learning:- Single phase transformer construction and working: Definition of Transformer, construction of Winding of shell type Transformer.		

Total		40 Hours
	Experiential learning:- Making of LED bulb and Determination of Ratings of Different types of Lamps. (Tungsten, Mucury Vapour, CFL & LED)	
Module-4	Different Illumination, Batteries and their applications.	
	Design of Electric Circuit using Circuit Breaker & Fuse for domestic house wiring. Electrical Safety: Safety Procedure for working on electrical mains & Apparatus, Electrical hazard, its preventions & Protections, Fire preventions & protection for electrical installations. First aid in electrical Injuries. Artificial respiration & chest compression for accidents victims. Importance of IE rules and Electrical License rules.	10 Hours
	Experiential learning:-	
	Type of earthing & Different types of Domestic Wiring.	
	Electrical Installations & wiring: Layout of LT switchgear, Switch fuse unit (SFU), MCB, ELCB, MCCB.	

Text Books:

T1.D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.

T2. Principles of Electrical Safety, Peter E. Sutherland, Wiley-IEEE Press.

Reference Books:

- R1. "Basic Electrical Engineering" by Mittle, V and Arvind Mittle, Tata McGraw Hil.
- R2.E. Hughes, "Electrical and Electronics Technology", Pearson.
- R3. Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.
- R4. "Basic Electrical Engineering" by C L Wadhwa, New Age pub.
- R5.D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.

R6.Electrical Safety Handbook, 4th Edition Hardcover by John Cadick Mary Capelli-Schellpfeffer Dennis Neitzel Al Winfield

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc23_ee62
- 2. https://onlinecourses.nptel.ac.in/noc23_ee17
- 3. https://onlinecourses.nptel.ac.in/noc23_ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23_ee15
- 6. https://onlinecourses.nptel.ac.in/noc22_ee90
- 7. https://onlinecourses.nptel.ac.in/noc22_ee93

Course Outcomes: At the end of this course, the students will be able to:

CO1	Introduce fundamentals idea & techniques about electrical engineering & to provide knowledge about DC, AC.
CO2	Analyses of different problems of electrical circuit using electrical theorems.
CO3	Understanding of magnetic circuit and solving the basic problems.
CO4	Impart conceptual analysis of electrical machineries & to familiarize the students with electrical safety equipment & domestic wiring.
CO5	Understand and implementation the earthing and wiring system.
CO6	Inculcate sound understanding of illumination scheme.

Type	Code	Basic Electronics Engineering	L-T-P	Credits	Marks
ES	BTBS-T-ES-102	Dusic Diceronics Engineering	3-0-0	2	100

Objectives	To expose to the field of electronics engineering, and to acquire the fundamental knowledge in the field.	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required,	
	sessions are planned to be interactive with focus on problem solving	

Evaluation Scheme

Teacher's Assessment			Written A	Total	
Quiz	Quiz Surprise Test(s) Assignment(s) Mid-Term End-Term				

Module-#	Topics	Hours
Module-1	Introduction to Electronics and Communication Engineering: Basic Electronics components (active, passive), Signal, Spectrum, Frequency Band and Industrial application (VLSI, Microwave, RF, Telecommunication, Fiber Optics, RADAR, Signal Processing). Basic Communication Block Diagram and concept of Transmitter, Receiver and Channel. Diodes: Overview of Semiconductors. Working principle and characteristics of PN junction. Experiential Learning: Diode applications (half-wave and full-wave rectifier, clipper, clamper and zener /Avalanche Breakdown).	10 Hours
Module-2	Bipolar Junction Transistor :Construction, Operation of Bipolar Junction Transistor and Experiential Learning: Transistor Biasing: Fixed Bias, Voltage divider bias, Transistor as a switch, CB, CE, CC (Relationship between α , β , γ) circuit configuration Input-output characteristics, as an Amplifier. Op-Amp:The Operational Amplifier (Op-Amp): The Ideal Op-Amp Characteristics, Virtual ground concept, Inverting and non-inverting configurations, Application of Op-Amp (Summing amplifier, Integrator, Differentiator. Unit Gain Amplifier)	10 Hours
Module-3	Basics of Digital Electronics: Number System, Inter conversion of Number Systems, Binary Arithmetic, Boolean Algebra, Simplification of Boolean Expressions, Demorgan's Theorem, SOP, POS, Digital logic Gates (AND, OR, NOT, NAND, NOR, EXOR, EX-NOR); Realization of Basic logic gates using universal gates, Combinational Circuits-Half-Adder, Full-Adder, Half-Subtractor, Full-Subtractor. Basic concept of Sequential Circuits, latch and flip-	12 Hours

Module-4	Introduction to Microprocessors and Microcontrollers: Basic block diagram: input, output, ALU, CU, Registers ,Difference between microprocessor and microcontroller. Experiential Learning: Introduction to chip designing and manufacturing. Introduction to Sensors and their Applications: Introduction to different types of Sensors: Temperature sensor, Moisture Sensor, Rain Sensor, LDR, IR, Smoke Sensor	8 Hours
	Total	40 Hours

Text Books:

- T1. Electronic Devices and Circuit Theory (Ninth Edition), Robert L. Boylested and Louis Nashelsky, Pearson Education, 482 FIE, Patparganj, Delhi 110 092.
- T2.Digital Design, 5th Edition M. Morris Mano and Michael D Ciletti Pearson
- T3.B. Ram, Fundamentals of Microprocessors and Microcomputers, Dhanpat Rai Publications Reference Books:
 - R1 Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.
 - R2.E. Hughes, "Electrical and Electronics Technology", Pearson.
 - R3.Microelectronic Circuits, 7th Edition Adel S Sedra and Kenneth C Smith Oxford University Press
 - R4.Fundamentals of Digital Circuits, 4th Edition A Anand Kumar PHI
 - R5. Integrated Electronics, 2nd Edition Jacob Millman and Christos Halkias Tata McGraw Hills
 - R6. A course in Electrical and Electronic Measurements and Instrumentation Author: AK Sawhney Publisher: Dhanpat Rai & Co. (P) Limited

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc23_ee62
- 2. https://onlinecourses.nptel.ac.in/noc23_ee17
- 3. https://onlinecourses.nptel.ac.in/noc23 ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23 ee15
- 6. https://onlinecourses.nptel.ac.in/noc22_ee90
- 7. https://onlinecourses.nptel.ac.in/noc22_ee93

CO1	To introduce fundamentals idea & techniques about electrical engineering & to provide	
CO2	To impart conceptual analysis of electrical machineries & to familiarize the students with electrical safety equipment & domestic wiring.	
CO3	To inculcate sound understanding of illumination scheme.	
CO4	To give knowledge about basic electronic components, industrial applications and	
CO5	To understand basic operation and applications of Diode, BJT and Op-Amp.	
CO6	To Study basic digital concepts, sensors, microprocessors and microcontrollers	

Type	Code		L-T-P	Credits	Marks
ES	BTES-T-ES-103	Basic Programming Skills	4-1-0	3	150

Objectives	To expose to the field of Problem Solving and Programing			
Pre-Requisites	Knowledge of Mathematics in Secondary Education			
0 00	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.			

Module-#	Topics	Hours
Module-1	Algorithm, Representation of Algorithm: Flowchart/Pseudo-code with examples. From algorithms to programs; C Program source code, C Program structure, basic syntax, data types, variables, constants, storage class, syntax and logical errors in compilation, object and executable code, Arithmetic expressions, operators and precedence.	10 Hours
Module-2	Decision making: Conditional Branching, if statement, if else statement, nested if else statement, switch, nested switch statements, Iteration and loops, break, continue, Decision making Application in solving real life problems. 8 Hou	
Module-3	Functions, Parameter passing in functions, call by value, idea of call by reference, recursion with examples of Finding Factorial, Fibonacci series, local and global variables, static variables. Experiential Learning: Arduino based Programming: Overview of the Arduino UNO Components, Analog and Digital Read, Controlling output	8 Hours
Module-4	Arrays: Arrays (1-D, 2-D), initialization, Accessing Array Elements, Matrix applications, passing arrays to functions, Character arrays and Strings, Pointers, Pointer arithmetic, dynamic memory allocation, pointer to array and array of pointers, Linear Search, Bubble Sort	8 Hours
Module-5	Structures, Array of structures, union, structure vs union, passing structure to function, File handling: ASCII and binary Files.	6 Hours
Total		40 Hours

Text Books:

- 1. E. Balagurusamy, Programming in ANSI C, 8th Edition, Tata McGraw Hill, 2019
- 2. Herbert Schild, C: The Complete Reference, Tata McGraw Hill

Reference Books:

- 1. A.K.Rath and A. K. Jagadev, "Data Structures and Program Design using C", 2nd Edition, Scitech Publications, 2011
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication Pvt. Ltd
- 3. Rajaraman, V., Computer Programming in C, PHI Publications
- 4. Simon Monk, Programming Arduino: Getting Started with Sketches, 2nd Edition, McGraw Hill, 2016
- 5. Yashavant Kanetkar, Let Us C, 17th Edition, BPB Publications New Delhi, 2019

Course Outcomes: At the end of this course, the students will be able to:

CO1	To formulate simple algorithms for problem solving and translate the algorithms to programs.
CO2	To test and execute the programs and correct syntax and logical errors.
CO3	To implement different conditional branching and loops for problem solving.
CO4	To decompose a problem into functions and synthesize a complete program using divide and conquer approach.
CO5	To use arrays, pointers and structures to formulate algorithms and programs.
CO6	To apply programming to solve searching and sorting problems.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-104	Basic Mechanical Engineering	3-0-0	2	150

Objectives	To expose to the field of Mechanical Engineering, and to acquire the fundamental knowledge in the said field.	
Pre-Requisites	Pre-Requisites Knowledge of Physics, Mathematics and computer programming in Secondary	
Teaching Scheme	ing Scheme Regular classroom lectures with use of ICT as and when required, sessions are	
	planned to be interactive with focus on group task, project planning and video	

Module-#	Topics	Hours
Module-1	Introduction to Engineering Materials and Mechanical Measurement: Engineering Materials: Classification of engineering material, Properties-Physical, Chemical & Mechanical, Composition of Cast iron and Carbon steels, Alloy steels their applications, Composites, Plastics and ceramics. Concepts on Metallurgy. Smart materials. Mechanical Measurement: Concept of measurements, errors in measurement, measurement of Temperature, Pressure, Velocity, and Flow. (Working principle only.) Experiential learning 1. Preparation of Composite material	8 Hours
Module-2	Introduction to Manufacturing Processes History of industrial revolution, introduction to Casting: Sand casting, Die casting, investment casting; centrifugal casting; Metal joining: Soldering, Brazing and Welding, Metal forming: bulk metal forming (rolling, forging, extrusion, wire/bar drawing), sheet metal forming(bending, deep drawing, sheering), Additive Manufacturing: Introduction to 3d printing: working principle,physics of process; process modelling: computer aided process planning for 3d printing; classification: Extrusion(Detail study of Fused Deposited Modelling with video demonstration of working principle of inhouse 3d printer), granular,laminated, light polymerized; Related technologies. Subtractive Manufacturing(working principle, details of machine tools and application only): Introduction, Conventional Machining Processes: cutting,turning, milling, drilling, grinding, and boring; Nonconventional Machining Processes: CNC Machining, EDM, ECM,Laser Cutting, Wood router(Detail study and video demonstration of working principle),water jetting. Experiential learning Wood carving of Art CAM using wood router Small project using Metal joining process(Similar and Dis-similar) Casting of different components	12 Hours

	Total	40 Hours
Module-4	Introduction power transmission: Power transmission devices: Belt, Rope, Gear & Gear drives. Coupling, clutch, brakes. (Working principle only), Mechanical Advantage, Velocity ratio. Experiential learning 6.Belt drive, muff coupling	8 Hours
Module-3	Basics of Thermodynamics, Steam formation& its properties. Evaporation and Condensation, Cryogenics: Dry ice Vs Liquid Nitrogen. Aircraft engines and its classifications, Fuels, Rockets. Application of Thermodynamics: Steam power plant, I.C Engine, Refrigerators and Air- Conditioners (Brief description of different components with Schematic diagram only.) Fluid Properties and their Applications: Fluid properties, Pascal's Law its application, Archimedes Principle, Bernoulli's theorem. Hydraulic machines: turbines, pumps, their types. CO4: Get knowledge of fluid properties and explain working principle of Hydraulic Machines Experiential learning 5.Hydraulic system design and manufacturing using Pascal's Law	12 Hours
Module-3	Fundamentals of Thermodynamics and Fluid Mechanics: Basics of Thermodynamics Steam formation & its properties. Evaporation and	

Text Books:

- T1. Basic Mechanical Engineering by Pravin Kumar, Pearson.
- T2. Text book of Elements of Mechanical Engineering, S T Murthy, Universities press.
- T3. Cengal, Y., Boles, "Thermodynamics", Mc-Graw Hill, 2001.

ReferenceBooks:

- R1. Basic Mechanical Engineering by Basant Agrawal, C M Agrawal, Willey .
- R2. Elements of Mechanical Engineering by J K Kittur and G D Gokak, Willey.
- R3. Engineering Thermodynamics by P. Chattopadhaya, Oxford University Press.
- R4. Basic Mechanical Engineering by .D. Mishra, P.K Parida, S.S.Sahoo, India Tech Publishing.
- R5. Engineering Materials, S C Rangwala, Charotar Publishing House.

Course Outcome

At the end of the course the student will be able to:

CO1	Discuss the Properties of Common Engineering Materials and measuring equipment
CO2	Describe the conventional and advanced Manufacturing process.
CO3	Explain the Working Principle of IC engines and Refrigeration and Air conditioning.
CO4	Get knowledge of fluid properties and explain working principle of Hydraulic Machines
CO5	Explain different power transmission systems.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-105	Basic Civil Engineering	3-0-0	2	150

Objectives	To expose to the field of Civil Engineering, and to acquire the fundamental knowledge in the said field.	
Pre-Requisites	Knowledge of Physics, Mathematics and computer programming in Secondary Education	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on group task, project planning and video demonstration.	

Module-#	Topics	Hours
Module-I	Introduction to Construction materials Basics of Civil Engineering & Broad disciplines of Civil Engineering Building components and Materials –Cement, Concrete, Steel,. Concept of smart building, Tiles for flooring, Different Types of Doors and windows, Paints. New and smart Materials – flyash, new-age concrete, recycling of materials.	10 Hours
Module-II	Field Survey: Scale, plan, map, principles of survey, Linear measurements, Ranging, Compass Survey, Bearing of a line, Levelling, Introduction to Modern Survey Instruments (EDM and Total Station), GIS and GPS (Introduction only). Transportation Railway, Airport, Types of Bridges, concept of Tunnels and Metro rail (underground and overhead engineering - Different modes of transport, classification of road,, Introduction to), Basics of Port and Harbor, Breakwater – Concept of inland waterways.	10 Hours
Module-III	Fundamentals of Soil Mechanics, Hydrology Fundamentals of soil classification, properties, foundation (deep and shallow)and types. Fundamentals of Water Resource engineering- sources and Introduction to hydraulic structures like canals, siphons, weirs, dams etc.	10Hours

Module-IV	Water supply (Experiential Learning) Introduction, sources of water, advantages and disadvantages of water supply, water supply system and its components. Types of flow, Pumps- its types, centrifugal pump its principle, components and its limitations. Pressure Regulator, Working of Pressure Regulator Sensors: Introduction, Types of sensor, uses and use of relay in tanks. Solenoid valve- Solenoid valve- Solenoid valve types, Solenoid valves working principle, Advanced plumbing Technologies, Plumbing in Building, Plumbing system, Purpose of plumbing system, Plumbing safety tools, Plumbing tools, Safety during work, Fitting and fixtures in domestic building, Plumbing business tools, Valves, Types of joints Waste Water Treatment Sewerage, Characteristics of sewerage, effect of sewerage on ecosystem, waste water treatment, Importance of waste water, its treatment process. Sewerage system, types of sewerage system	12 Hours
-----------	---	----------

TextBooks:

- T1. Basic Civil Engineering, S.Gopi, Pearson.
- T2. Basics of Civil Engineering, M.S. Palanichamy, McGraw Hill.

ReferenceBooks:

- R1. Surveying Vol -1, RAgor, Khanna Publisher.
- R2. Water supply ana Waste water engineering, S.K. Garg.
- R3. Introduction to Bridge Engineering, D. Jhonson Victor.
- R4. Engineering Materials, S C Rangwala, Charotar Publishing House.

Course Outcomes: At the end of this course, the students will be able to:

CO 1	Identify the different properties of building materials
CO 2	Understanding the different modes of transportation
CO 3	Study of engineering properties of soil
CO 4	Analyze of water supply system by sensors and solenoids
CO 5	Evaluating different types of pumps
CO 6	Explore the uses of different instruments used in civil engineering work

Experiential Learning:

- 1. Transparent centrifugal pump.
- 2. Aqueduct, Syphon aqueduct, Super passage, canal syphon, level crossing
- 3. Practical working model of port

4. Piping connection.	
5. Piping network Connection	
6. Solenoid Valve	
7. Study of different water sensors.	
8. Hydraulic bridge	
9. Fly-ash Bricks.	
10. New age concrete ferroconcrete, roller compacted concrete, FRC	

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-HS-111	English for Engineers –I	2-0-0	1	100

Objectives	To develop the understanding of communication in different context. Z.To identify the basics of professional Writing
	3. To acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.
Pre-Requisites	NONE
Teaching Pedagogy	Regular classroom lectures with use of the interaction, experiential, activity oriented.

Module-#	Topics	Hours
Module-#	Introduction to Communication 1. Process and Factors of Communication 1.1. History & Significance of Communication 1.2. Communication loop 1.3. Factors Responsible (Sender, Receiver, Channel, Code, Feedback etc.) 2. Verbal and Non-verbal communication 2.1. Verbal Communication 2.3. Non-Verbal Communication (Body language, Paralanguage) 3. Barriers to Communication 3.1. Barriers and Filters 3.2. Types of Barriers (Physical, Psychological, , Cultural Barrier etc. 3.3. Tips to Overcome Barriers	06 hours 3+2+1 +1(EL) =7 hour
	Experiential Learning: Non-verbal communication	

	Professional Writing	
Module-2	 Letters &E-mail writing 1.1 Block format, 2 E-Mail address 3 Subject Line 4 Organizing the body 5 E-Mail etiquette Notice, Memo, Circular Format of the Notice Writing strategy Using social media for communication Writing blogs What's app messages Experiential Learning: Using social media for communication 	2+3+3 08 Hours
Module-3	Name of the Lessons: 1.A.P.J Abdul Kalam from Wings of Fire, A.P.J Abdul Kalam with Arun Tiwari 2. "Spoken English & Broken English" by Bernard Shaw 3. Life Doesn't Frighten Me Poem by Maya Angelou 4. On Superstitions by A.G.Gardiner	8 Hours

Reference Books:

- R1. An Introduction to Professional English and Soft Skills Das et al.- Foundation Books
- R2. Understanding Human Communication by Ronald B. Adler
- R3. Technical Communication, Fourth Edition-Meenakshi Raman & Sangeeta Sharma
- R4. The Definitive Book of Body Language by Allan Pease
- R5. Silent messages by Albert Mehrabian
- R6. Advanced English Grammar by Martin Hewing
- R7. English Grammar in use- Raymond Murphy

Online Resources:

www.britishcouncil.in http://nptel.ac.in http://eltai.in **Course Outcomes**: At the end of this course, the students will be able to:

CO1	Learn the fundamentals of communication
CO2	Understand the basic professional writing
CO3	Evaluate Literary convention

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-101	Information Technology and Information Systems (IT & IS)	2-0-0	0	100

Objectives	To expose to the fundamental usage of Computer.
Pre-Requisites	Basic knowledge of English in Secondary Education
	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life activities.

Module	Course to be Covered	Hours
Module 1	Introduction Windows OS, OS Commands and operations, Introduction to MS Office MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles. Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols.	5 Hours
Module 2	MS-WORD: Mailing tab: Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus. MS-EXCEL: Create workbook, Home tab, Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	5 Hours
Module 3	MS-EXCEL: Page Layout tab: Margin, Orientation, Paper size, Print area, Background Formulas tab: Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if) MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	5 Hours
Module 4	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound. Internet Technology: MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	5 Hours
Module 5	GRAMMERLY: Creating and uploading documents, Editing text Using GrammarlyGO, Formatting text, Checking your document for plagiarism. ChatGPT: Introduction,ChatGPT in general life, Uses and Applications of ChatGPT: Blog Topics and Keyword Research, Assist in Generating Copy for a Website	

Proofreading and Editing, Creating WordPress Plugins, Writing and Debugging Code	
TOTAL	24
	Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	To give basic fundamental concept about computer system.
CO2	To get familiar with MS Windows OS.
CO3	To get hands on expertise in MS Word.
CO4	Able to solve mathematical problems systematically using MS excel.
CO5	Able to design professional presentation using MS PowerPoint.
CO6	Able to manage the information in computer system using internet technology.

EXPERIMENTS:

Experiment No.	Course to be Covered	Hours
Experiment-1	Introduction Windows OS, OS Commands and operations, Introduction to MS Office	2 Hours
Experiment-2	MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles.	2 Hours
Experiment-3	MS-WORD: Insert tab: Cover page, blank page, page break, table, picture, clip art, shape, chart, hyperlink, header and footer, Textbox, word art, equation and symbols.	2 Hours
Experiment-4	MS-WORD: Mailing tab: Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus.	2 Hours
Experiment-5	MS-EXCEL: Create workbook, Home tab, Insert tab Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	2 Hours
Experiment-6	MS-EXCEL: Page Layout tab: Margin, Orientation, Paper size, Print area, Background	2 Hours
Experiment-7	MS-EXCEL: Formulas tab: Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if)	2 Hours
Experiment-8	MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	2 Hours
Experiment-9	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound.	2 Hours
Experiment-10	Internet Technology: MS-Outlook, E-mail Social media Application: Twitter, Linked-In, Facebook, Instagram	2 Hours

Experiment-11	GRAMMERLY: Creating and uploading documents, Editing text Using	2 Hours		
	GrammarlyGO, Formatting text, Checking your document for plagiarism.			
Experiment-12	Experiment-12 ChatGPT: Introduction, ChatGPT in general life, Uses and Applications of 2			
	ChatGPT, Blog Topics and Keyword Research, Assist in Generating Copy			
	for a Website Proofreading and Editing, Creating WordPress Plugins,			
	Writing and Debugging Code			
	TOTAL	24 Hours		

- Reading Material (s)
 1. IT & IS Lab Manual, Department of CSE, GIFT, Bhubaneswar
 - 2. Microsoft Office 2010 Introductory BY Gary B. Shelly, Misty E. Vermaat.

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-MC-102	Constitution of India	2-0-0	0	100

Objectives	The objective of this subject is to provide understanding of the basic concepts of Indian Constitution and various organs created by the constitution including their		
	functions. The course acquaints students with the constitutional design of statements structures and institutions, and their actual working overtime.		
Pre-Requisites	Basic knowledge of Indian history, overall idea on India's political system.		
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required and each session is planned to be interactive.		

Evaluation Scheme

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Historical perspective of the constitution of India. Preamble of Indian constitution, Salient fe a tures of Indian constitution, Fundamental rights, Fundamental Duties and its legal status, Directive principles of state policy-its importance and Implementation.	8 Hours
Module-2	Federal structure and distribution of legislative and financial powers between the Union and the States, The Union legislature - The Parliament - The Lok Sabha and the Rajya Sabha, Composition, powers and functions, Union executive, President of India (with powers and functions), Vice-President, The Council of Ministers and the Prime Minister - Powers and functions.	6 Hours
Module-3	State Government, The State Legislature - composition, powers and functions, State executive, Governor (with powers and functions).	5 Hours
Module-4	Amendment of the Constitutional Powers and Procedure, Emergency Provisions: National Emergency, President Rule, Financial Emergency. Scheme of the Fundamental Right to Equality Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right to Life and Personal Liberty under Article 21. Local Self Government - Constitutional Scheme in India.	5 Hours

Module-5	The Indian Judicial System - the Supreme Court and the High Court's composition, jurisdiction and functions, Judicial review, Judicial activism, independence of Judiciary in India.	
Total		28 Hours

Text Books:

- T1. D. D. Basu, Introduction of Constitution of India, 22nd Edition, LexisNexis, 2015.
- T2. K. Subas, An Introduction to India's Constitution and Constitutional Law, 5th Edition, National Book Trust India, 2011.

CO1	Provide basic information about Indian constitution.	
	Analyze the legalities and related issues of drafting, adoption and enforcement of the Indian	
CO2	Constitution as a fundamental law of the nation and the provisions and privileges of Indian	
	Citizenship.	
CO3	Understand and judiciously use the fundamental rights and privileges envisaged in the	
CO3	constitution.	
CO4	Analyze the major dimensions of Indian Political System and to contribute in protecting and	
CO4	preserving the sovereignty and integrity of India.	
CO5 Know the successful functioning of democracy in India		
CO6	Understand their obligations, responsibilities, privileges & rights, duties and the role that they	
C00	have to play in deciding the Administrative Machinery of the country.	

Type	Code	Mathematics - II	L-T-P	Credits	Marks
BS	BTBS-T-BS-211	Wathematics - II	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and	
	concepts of numerical methods to solve the system of linear equations & ordinary	
	differential equations, interpolation, and applications of vector integral calculus.	
Pre-Requisites	A sound knowledge of linear algebra, basic calculus, and matrix algebra.	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are	
	planned to be interactive with focus on problem solving activities.	

Module	Topics	Hours		
	Root finding of algebraic and transcendental equations: Bisection method, Secant			
Module-1	and Regula-falsi methods, Newton's method, Fixed point iteration method, Rate of			
	convergence. Experiential learning- Finding the root of transcendental equations			
	using MATLAB.			
	Interpolation: Lagrange interpolation, Newton's divided difference interpolation,			
Module-2	Newton's forward and backward interpolation. Numerical differentiation and	14 Hours		
	Integration: Newton-Cotes quadrature formula, Trapezoidal rule, Simpson's rule,			
	2-point and 3-point Gauss Legendre rule. Euler method, Modified Euler method.			
	Experiential learning- Evaluation of numerical integrals and solution of initial			
	value problems.			
	Beta and Gamma functions, Vector Integral Calculus: Line Integrals,			
Module-3	Independence of Path, Double Integrals, Green's theorem with applications.			
	Series Completion, Coding-Decoding, Data Sufficiency, Basic concepts on			
Module-4	Probability and statistics.			
	Total	45 Hours		

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.
- T3. R. S. Aggarwal, A Modern Approach to Verbal & Non-verbal reasoning, S. Chand publication.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.
- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. B. P. Acharya, R. N. Das, A Course on Numerical Analysis, Kalyani Publishers
- R5. R. Pratap, Getting Started with MATLAB: A Quick Introduction for Scientists & Engineers, Wiley

Online Resources:

- 1. https://nptel.ac.in/courses/127106019
- 2. https://nptel.ac.in/courses/111102111
- 3. https://nptel.ac.in/courses/111105122
- 4. https://nptel.ac.in/courses/111105121
- 5. https://nptel.ac.in/courses/111105134

CO1	Apply the numerical methods to find the approximate solutions of algebraic and transcendental equations.	
CO2	Evaluate the real time problems using MATLAB.	
CO3	Solve the numerical solution of differential equations and use of various techniques for evaluating the integrals.	
CO4	Calculate line integrals in two dimensions for differential forms and also calculate double integrals in Cartesian and polar coordinates over the domains.	
CO5	O5 Know the basic concepts of verbal, non-verbal reasoning and logical ability for better employability.	
CO6	Understand the basic concepts of mathematical theory of probability.	

Type	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTES-T-ES-203		4-1-0	3	150

Objectives	Dbjectives Exploring basic data structures concept used in Industries	
Pre-Requisites	tes Knowledge of Mathematics in Secondary Education and basic Programming concept.	
Teaching Scheme Regular classroom lectures with use of ICT as and when required, so planned to be interactive with focus on real life problem solving activities.		

Module-#	† Topics			
Module-1	Introduction: Basic Terminologies: Algorithm Analysis: Mathematical Background, Model, Analyze, Running Time Calculations, Asymptotic Notations, classification of data structure. Basic data st ructure:1d-Array and 2d-Array Data Structure Operations: insertion, deletion, traversal Sparse matrix, address calculation of Array, ADT(Abstract Data type),DMA(Dynamic memory allocation),pointer, Self-referential structure. A comparison between DMA and SMA. De-allocation Strategy, Buddy System, Compaction.			
Module-2	Stacks and Queues: ADT Stack array representation and its operations: Algorithms Applications of Stacks: Expression Conversion and evaluation of expression and corresponding algorithms, Experiential Learning: application of stack Types of Queue: Simple Queue, Circular Queue, Priority Queue ADT queue,; Array representation and Operations on each types of Queues: Algorithms and their analysis, application of queue.(Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm) Priority Queues.			
Module-3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked			
Module-4	Sorting and searching: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Experiential Learning: Insertion Sort, Merge Sort,			

Total		40 Hours
	Shortest path algorithm: Dijkstra's algorithm, topological sorting.	
	classification of graph Minimum spanning tree (Kruskal and prims algorithm),	
	representation), Graph search and traversal algorithms and complexity analysis,	
	Graph: Basic Terminologies and Representations (Adjacency matrix and linked list	
	Applications of all trees.	
	Tree: definitions, algorithms and analysis, Red black trees: definition and operation,	
Module-5	their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+	
	Search Tree, Tree Traversing, AVL Tree; Tree operations on each of the trees and	6 Hours
	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Binary	

Text Books:

- T1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press
- T2. Data Structures with C (Schaum's Outline Series), Seymour Lipschutz, TMH

Reference Books:

- R1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning
- R2. Data Structures And Algorithms A.V.Aho, J. E. Hopcroft, and J. D. Ullman, I, Pearson Education, First Edition Reprint 2003R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R3. How to solve it by Computer, 2nd Impression by R. G. Dormey, Pearson Education
- R4. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education

CO1	Understand the concept of Dynamic memory management, data types, algorithms, Big O
COI	notation.
CO2 Understand basic data structures such as arrays, linked lists, stacks and queues.	
CO3	Understand the implementation and application of linear data structure
CO4	Understanding of tree traversal techniques and their application
CO5 Understand the graph traversal and its application In real life.	
CO6	Understand Algorithm for different sorting, searching techniques and their running
C00	complexity, and basic concept of hash function

Type	Code	English for Engineers-II	L-T-P	Credits	Marks
HS	BTBS-T-HS-211	English for Englicers-II	2-0-0	1	100

	To understand the nuances professional Communication
Objectives	To prepare students for real world interaction
	To enhance the soft skill competency of learners
Pre-Requisites To have a common understanding of concepts of communication.	
Teaching Pedagogy	Real world-based teaching learning pedagogy.

Module-#	Topics	Hours
Module-1	 Introduction to Professional Communication Patterns of Communication 1.1 Formal &Semi Formal: Vertical, Horizontal, Diagonal communication 1.2 Informal: Grapevine 1.3 External and Internal Communication Experiential Learning: Patterns of Communication 	3+1(EL) 4Hours
Module-2	Employment Communication & Soft skill 1.1. Cover Letter and Resume' Building, Types of Resumes: Traditional & Electronics 1.2. Presenting to the audience :4ps 1.3. Cross Cultural Competency 1.4. Group Discussion, Types of GD, Do's and don'ts 1.5. Interview, Types of Interviews, How to Prepare for an Interview Experiential Learning: Cross Cultural Competency	2+2+2+2+2 =10+4(EL) Hours

	Literature Appreciations	
Module-3	 Steve Jobs by Isaacson Walter An Interview with Microsoft CEO: Satya Nadella by Sudipta Sengupta, TNN, March 10,2023 	6 Hours+ 1(EL)=7Hr
	Experiential Learning: Book Review	

Reference Books:

- R1. Corporate Soft Skills-Sarvesh Gulati- Rupa Publications
- R2. Bridging the Soft Skills Gap- Brucetulgan
- R3. Excellence in Business Communication John V. Thill, Courtland Bovee
- R4. Simply Said: Communicating Better at Work and Beyond by Jay Sullivan
- R5. Steve Jobs by Isaacson Walter

Online Resources:

https://communicationmgmt.usc.edu

https://nptel.ac.in

www.britishcouncil.org

https://eltai.ac.in

https://in.coursera.

CO1	Understand the various forms and Channels of communication in a corporate world
CO2	Develop skills to meet the placement challenges
CO3	Implement different forms of writing for professional needs
CO4	Acquiring skills set to sustain the professional careers.

Type	Code	Elements of Engineering	L-T-P	Credits	Marks
BS	BTBS-P-BS-102	Physics Laboratory	0-0-2	1	100

Objectives	The laboratory should help students to understand the role of direct observation in physics and to distinguish between inferences based on theory and on the outcomes of experiments.
Pre-Requisites	Knowledge of Physics in Secondary Education
TeachingPedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Determination of acceleration due to gravity (g) by bar pendulum.	2 Hours
Experiment-2	Determination of rigidity modulus by using Barton's apparatus.	2 Hours
Experiment-3	Determination of surface tension of a given liquid by capillary rise method.	2 Hours
Experiment-4	Determination of wavelength of an unknown monochromatic source of light using Newton's ring apparatus.	2 Hours
Experiment-5	Plotting of V~I characteristics of PN junction diode.	2 Hours
Experiment-6	Determination of Young's modulus by using Searle's apparatus	2 Hours
Experiment-7	Plotting of input and output characteristics of BJT (Bipolar junction	2 Hours
Experiment-8	Determination of grating element of a plane diffraction grating.	2 Hours
Experiment-9	Determination of co-efficient of thermal conductivity of a bad conductor by Lee's disc method.	2 Hours
Experiment-10	Verification of laws of vibrations in a stretched string using Sono metre.	2 Hours
	BEYOND SYLLABUS	2 Hours
Experiment-11	To find out the resistance of unknown wire by using Meter bridge.	2 Hours
Total		22 Hours

CO1	Understand the laws to various process and real system.
CO2	Study basics of semiconductor & devices and their applications in different areas.
CO3	Distinguish the importance of different properties of material.

CO4	Design new instruments with practical knowledge.
CO5	Analyze, interpret and summarize the experimental results and compare with theoretical
CO6	Troubleshoot effectively in laboratory settings.

Indicative Projects

- 1. To make a periscope to understand the laws of reflection.
- 2. To make an electromagnet.
- 3. To make a line following Robot.
- 4. To make a portable Mobile charger.
- 5. To make a Rain Alarm /soil moisture Detector.
- 6. To make an Automatic street light.
- 7. To make a proto type solar panel.
- 8. To make a gas leakage detector.
- 9. To make a temperature sensor.
- 10. To build an earthquake alarm.
- 11. To make a coin cell by using super capacitor material.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-P-BS-103	Applied Chemistry Laboratory	0-0-2	1	100

Objectives	The laboratory will help the students on the volumetric analysis, calculations based on mass- volume relation etc. The students will get knowledge on the synthesis of different medicines, preparation of soap & detergents etc. The students will get knowledge on the operation of different equipment's.
Pre-Requisites	Knowledge of chemistry in Secondary Education.
TeachingPedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Standardization of KMnO4 by using sodium oxalate. Determination of Fe2 ⁺ ion in a double salt.	
Experiment-2	Preparation of Aspirin	2 Hours
Experiment-3	To determine Dissolved oxygen in a given sample of water	2 Hours
Experiment-4	Determine the amount of Sodium Hydroxide and Sodium carbonate in the given solution using Standard acid	2 Hours
Experiment-5	Estimation of Ca ²⁺ ion in a sample of limestone	2 Hours
Experiment-6	Determination of partition coefficient of I ₂ between benzene and water.	2 Hours
Experiment-7	Determination of flash and fire point of an oil by Pensky Martine's apparatus.	2 Hours
Experiment-8 Determination of viscosity of lubricating oil by Redwood visco		2 Hours
Experiment-9	Determination of available chlorine in a sample of bleaching powder	2 Hours
Experiment-10	Experiment-10 Determination of TH value of water by EDTA method.	
BEYOND SYLLABUS		
Experiment-11	Preparation of soap and detergent.	2 Hours
	Total	22 Hours

CO1	Acquire knowledge on the basic volumetric analysis.
CO2	Classify various fuels based on combustion parameters and understand the working Principle based on their properties.
CO3	Know the importance of analytical techniques, instrumentation and applications
CO4	Impart knowledge on of water quality parameters and treatment of water.
CO5	Acquire Knowledge about synthesis and preparation of drugs, soap etc.

Indicative Projects

- 1. Preparation Detergent Powder From Paddy Husk
- 2. Quantity of Presence of Casein in Different Samples of Milk
- 3. Preparation of Organic Dye.
- 4. Preparation of Toilet Soaps
- 5. Presence of Oxalate Ions in Guava Fruit and Different Stages of Ripening.
- 6. Sterilization of Water Using Bleaching Powder.
- 7. Preparation of ash brick.
- 8. Preparation of Gelatin.
- 9. Preparation of Paracetamol.
- 10. Preparation of Ink.
- 11. Effect of Potassium Bisulphate as a Food Preservative.

Type	Code	<u> </u>	L-T-P	Credits	Marks
ES	BTBS-P-ES-101	Basic Electrical Engineering Laboratory	0-0-2	1	100

Objectives	To train the students in conducting load tests on electrical circuit and equipment's To gain practical experience in characterizing electrical machinery.
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics		
Experiment-1	Study of Different Electrical measuring Instruments and other electrical equipment		
Experiment-2	Verification of thevenin's theorem using DC circuits.		
Experiment-3	Verification of Superposition theorem theorem using DC circuits.		
Experiment-4	Verification of Maximum power transfer theorem using DC circuits.	2 Hours	
Experiment-5	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	2 Hours	
Experiment-6	Verification and calculation of Resonance frequency in series R-L-C circuit.		
Experiment-7	Connection and Demonstration of Domestic Wiring System		
Experiment-8	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers		
Experiment-9	Power and phase measurements in three phase system by two wattmeter method		
Experiment-10	OC and SC test on single phase transformer		
	BEYOND SYLLABUS		
Experiment-11	Verification of Ohm's Law		
Experiment-12	Verification of B-H curve		
Total		24 Hours	

Online Resources:

- 1. http://vlabs.iitkgp.ernet.in/be/
- 2. http://sl-coep.vlabs.ac.in/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify different Electrical Instruments and measure different parameters.
CO2	Study connection and demonstration of DC generators, motors and wiring systems.
CO3	Study design and connection of Different Lamps
CO4	Identify active and passive electronic components and handle measuring instruments like
CO5	Design different circuits using diode, BJT and opamps.
CO6	Design and analyze logic gates

Indicative Projects

SL. NO.	NAME OF THE PROJECT
1	Mobile Charger
2	Extension Board
3	Multiple USB Port
4	Brushless DC Motor Driver
5	Small Transformers Upto 7V.
6	Small Model Of Bio-Gas Plant
7	Temperature Control 12v DC Fan
8	Making Of Led Bulbs.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-102	Basic Electronics Engineering Laboratory	0-0-2	1	100

Objectives To train the students in conducting load tests on electrical machines To gain practical experience in characterizing electronic devices To train the students to use CRO and DSO for measurements	
Pre- Requisites	Knowledge of Physics and Mathematics in Secondary Education
Teaching Scheme	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	Study of Different Electrical measuring Instruments and other electrical equipment	2 Hours
Experiment-2	Measurement of Voltage, current, power and power factor calculation in series R-L-C circuit.	2 Hours
Experiment-3	Connection and Running of DC Motors, DC generators, 3- phase Induction motors and 1- phase Transformers.	2 Hours
Experiment-4	Connection and Demonstration of Domestic Wiring System.	2 Hours
Experiment-5	Model Study & Connection of Different Lamps (Mercury Vapor Lamp, Tungsten, LED Bulbs, Fluorescents, CFL)	2 Hours
Experiment-6	A:- Identification of electronic components, devices and Basic Sensors, B:- Study and use of CRO/ DSO, Function generator to view and measure different wave forms.	2 Hours
Experiment-7	Design of Simple Diode Circuit and Study of V-I characteristics of semiconductor Diode & calculation of DC and AC Resistance	2 Hours
Experiment-8	Design of Half – wave rectifier and full wave rectifier circuits, and calculation of efficiency	2 Hours
Experiment-9	Design of inverting and non- inverting amplifiers using Op-Amp to view and measure waveforms	2 Hours
Experiment-10	Study and truth table verification of logic gates.	2 Hours
	BEYOND SYLLABUS	
Experiment-11	Design of simple BJT Bias circuit to draw VI characteristics (input & output) of a NPN transistor (in CE configuration)	2 Hours
Experiment-12	Verification of Ohm's Law	2 Hours
	Total	24 Hours

Online Resources:

- http://vlabs.iitkgp.ernet.in/be/
 http://sl-coep.vlabs.ac.in/

3.

CO1	To identify different Electrical Instruments and measure different parameters.
CO2	To study connection and demonstration of DC generators, motors and wiring systems.
CO3	To study design and connection of Different Lamps
CO4	To identify active and passive electronic components and handle measuring instruments like CRO and DSO.
CO5	To design different circuits using diode, BJT and opamps.
CO6	To design and analyze logic gates

Indicative Projects

SL.	NAME OF THE PROJECT
NO.	
1	Night light using LDR.
2	Automatic Fan ON/OFF using Temperature Sensor.
3	Moisture Controller using Moisture Sensor.
4	Fire Alarm using Temperature Sensor.
5	Light ON /OFF using Piezo Sensor.
6	Clap sound Operated using Sound Sensor.
7	Rain Detector
8	Power supply Circuit
9	Touch less Doorbell
10	Motion Detector using Ultrasonic Sensor

Type	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-103	Basic Programming Skills Laboratory	0-0-4	2	100

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
0 00	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours
Experiment-1	Familiarity with basic UNIX/LINUX command, vi editor. Sample C Program.	2 Hours
Experiment-2	Programs on arithmetic expressions, operators, and precedence.	2 Hours
Experiment-3	Programs on Conditional Branching.	2 Hours
Experiment-4	Programs on Loops.	2 Hours
Experiment-5	Programs on single dimensional array.	2 Hours
Experiment-6	Programs on two-dimensional array.	2 Hours
Experiment-7	Programs on Functions.	2 Hours
Experiment-8	Programs on Recursive Functions.	2 Hours
Experiment-9	Programs on Pointers.	2 Hours
Experiment-10	Programs on Dynamic Memory Allocation.	2 Hours
Experiment-11	Programs on Structure.	2 Hours
Experiment-12	Programs on Union.	2 Hours
Experiment-13	Programs on File Handling.	2 Hours
Experiment-14	Implementation of Linear search.	2 Hours
Experiment-15	Implementation of sorting algorithm: Bubble Sort	2 Hours
Experiment-16	Arduino Programming – Introduction to Sensors, Introduction to Microcontrollers.	2 Hours
Experiment-17	Programing, Serial Communication	2 Hours
Experiment-18	Arduino based Project	2 Hours

	Total	38 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Remember basic understanding of computer and basic concepts of running programs.
CO2	Understand the concepts of decision making and looping for solving problems.
CO3	Learn to concise and precise on implementing pseudo code using functions
CO4	Illustrate the usages of array, function and pointer in programming.
CO5	Select the user define data type structure, union and enum for problem solving.
CO6	Develop projects using different file handling functions.

Projects using C Programing

- 1) Unit Converter
- 2) Customer Billing System in a Shopping Mall
- 3) Banking Management System
- 4) University Grading System
- 5) Bus Ticket Reservation System
- 6) Home Automation System
- 7) Digital Wall Clock
- 8) Book Support Automation
- 9) Lab Management System
- 10) Nursery Management System

Arduino based Project

- 1) Obstacle detection using Arduino
- 2) Controlling 4 LEDs to make different patterns
- 3) Voice Activation System
- 4) Use Humidity Sensor using Arduino
- 5) Arduino Based Color Detector
- 6) Touch Dimmer Switch Circuit Using Arduino
- 7) Wireless Door Bell
- 8) Arduino Traffic Light Controller
- 9) Frequency Counter Using Arduino
- 10) Arduino 4-Digit 7-Segment LED Display
- 11) Arduino based Digital Thermometer
- 12) Arduino Light Sensor
- 13) Portable Ultrasonic Range Meter
- 14) Security Alarm System Using Arduino
- 15) Arduino Alarm Clock
- 16) Interfacing LCD with Arduino

Type	Code	Basic Mechanical Engineering Laboratory	L-T-P	Credits	Marks
ES	BTBS-P-ES-104		0-0-2	1	100

	To train the students in conducting experiment and get acquainted with different measuring devices, gain practical experience on Refrigerator, IC engine, Hydraulic Machines, Power transmission system and Gear trains. Experience application of Bernoulli's theorem and Meta center.	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education	
Teaching Scheme	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	Validation of Bourdon tube pressure guage with U-tube Manometer	2 Hours
_	Verification of Flow measuring apparatus (Venturi meter/ orifice meter/ rota meter)	2Hours
Experiment-3	Determination of COP of Domestic refrigerator	2 Hours
_	Draw valve timing diagram of two stroke & four stroke petrol and diesel engine	2Hours
Experiment-5	Verification of Bernoulli's Theorem	2 Hours
Experiment-6	Determination of Meta centre	2 Hours
Experiment-7	Determination of mechanical efficiency of Pelton & Francis Turbine	2 Hours
Experiment-8	Comparison of efficiency of Centrifugal pump apparatus, Reciprocating	2 Hours
Experiment-9	Determination of speed ratio of Simple ,Compound & reverted Gear train	2 Hours
Experiment-10	Demonstration of power transmission system	2 Hours
Total		20 Hours

At the end of the semester students will able to

CO1	Experience different pressure and flow measuring instruments
CO2	Experience working principle of refrigerator and IC engines
CO3	Get knowledge about application of Bernoulli's Theorem and Meta centre
CO4	Get knowledge of different types of hydraulic machines
CO5	Experience different types gear trains and able to find out mechanical advantage and gear
CO6	Get idea of power transmission system

Indicative Projects (Mechanical)

- 1. Component Preparation using 3D Printing
- 2. Specimen preparation technique for Metallurgical study.
- 3. To prepare a ship model for verification of Archimedes principle.
- 4. Model of Steam power plant.
- 5. Overhead gantry crane of 3-axis movements.
- 6. Leading & Trailing brake arrangement in Drum Brake
- 7. High speed reduction in gear drive by using worm & worm wheel.
- 8. Specimen preparation and its test in UTM.
- 9. Wind Turbine Model.
- 10. Preparation hexagonal headed Bolt (Facing & Turning)
- 11. Specimen preparation and its test in Fatigue testing machine.
- 12. Water turbine Project Model
- 13. Preparation hexagonal headed Bolt (Step Turning & Thread Cutting)
- 14. Preparation of Components/names in CNC Wood Router
- 15. Bio-fuel preparation and Study.
- 16. Compound gear train using by using Spur gear.
- 17. Fast and loose pulley arrangement using Belt drive
- 18. Development of cone clutch for power transmission.
- 19. Conversion of Reciprocating to rotary motion using Crank & Connecting rod.

Type	Code	Basic Civil Engineering Laboratory	L-T-P	Credits	Marks
ES	BTES-P-ES-102		0-0-2	1	100

9	To train the students in conducting different test on engineering materials. To gain practical experience in characterizing soil and handling hydraulic machines. To train the students to use different measuring instruments.	
Pre-Requisites	Knowledge of Physics and Chemistry in Secondary Education	
8 8 8	Regular practical classes with use of virtual labas and when required, sessions a planned to be interactive with focus on problem-solving activities.	

Module-#	Topics	Hours
Experiment-1	Water absorption test of brick.	2 Hours
Experiment-2	Compressive strength of Brick.	2 Hours
Experiment-3	Determination of Specific gravity of soil	2 Hours
Experiment-4	Sieve Analysis of Soil.	2 Hours
Experiment-5	Study of different instruments used in survey.	2 Hours
Experiment-6	Compressive strength of Concrete.	2 Hours
Experiment-7	Study of Different types of pipe fittings	2 Hours
Experiment-8	Measurement of bearing of a line.	2 Hours
Experiment-9	Study of Solenoid Valve	2 Hours
Experiment-10	Study of Sensors.	2 Hours
	BEYOND SYLLABUS	2 Hours
Total	,	20 Hours

CO-1	Identify the different properties of building materials
CO-2	Understanding the different modes of transportation
CO-3	Study of engineering properties of soil
CO-4	Analyze of water supply system by sensors and solenoids
CO-5	Evaluating different types of pumps
CO-6	Explore the uses of different instruments used in civil engineering work

Indicative Projects (Civil)

- 1. Intelligent transportation system. prototype
- 2. Glass fiber reinforced concrete.
- 3. pH test of drinking water in gift campus.
- 4. Preparation of building blocks.
- 5. Identification of different parts of dam prototype
- 6. Pavement layer identification prototype
- 7. Concept of suspension bridge –prototype
- 8. Construction of English bond in cement mortar.
- 9. Study of properties for the locally available Soil.
- 10. Testing of compressive strength of the local stone in Khordha.
- 11. Admixtures used in RMC visit to plant
- 12. Preparation of fly ash brick.
- 13. Seasoning of timber.
- 14. Types of timber used in construction.
- 15. Tensile strength test of steel in construction
- 16. Identification of components of a building prototype
- 17. Various field test of cement.

Type	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-104	Engineering Graphics with Auto-CAD	0-0-3	1.5	100
		Laboratory			

Objectives	To develop the ability to produce simple Engineering Drawings based on current practice	
•	and to increase the skill to read the Product, Manufacturing, and Construction drawings	
	used in Industries.	
Pre-Requisites	Basic Knowledge on simple Geometry And shape of Simple Solid's	
Teaching	Regular practical classes with use of virtual labs and when required sessions are	
Pedagogy	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	To prepare a sheet on Lines and their uses.	3Hours
Experiment-2	To prepare a sheet on Lettering, dimensioning.	3Hours
Experiment-3	To prepare a sheet on Projection of point and lines.	3Hours
Experiment-4	To prepare a sheet on Projection of planes & Solids.	3Hours
Experiment-5	To draw Lines/Planes/ solids using Auto CAD.	3Hours
Experiment-6	To prepare a sheet on section of Solid and development of surfaces.	3Hours
Experiment-7	To draw the Ortho graphics projections of solids and sectioning using Auto CAD.	3Hours
Experiment-8	To Prepare a sheet on isometric projections.	3Hours
Experiment-9	To draw isometric view of solids using Auto CAD.	3Hours
Experiment-10	To prepare a sheet on Building Drawing.	3Hours
	BEYOND SYLLABUS	
Experiment-11	To draw Ortho Graphic views of standard Isometric Solids.	3 Hours
Total		33 Hours

After completing this course the students should be able to:

CO1	Understand the visual aspect of engineering drawing, scales and Orthographic Projections
CO2	Acquire knowledge on projection of points, lines and plane surfaces and solids.
CO3	Understand the basics of Auto CAD, Commands and Toolbar.
CO4	Apply modern engineering tools like Auto CAD and creating working drawings on sectioning
	of Solids and development of surfaces.
CO5	Able to draw Isometric view of standard Solids using Auto CAD.
CO6	Apply the knowledge to create building drawings

Indicative Projects

- 1. 2D Drawing from Simple 3D Object With given Specification.
- 2. Component Diagram of Simple Physical Sheet Metal Part, Worm Gear, Hub-Shaft.
- 3. Nut-Bolt-Washer assembly, simple Plastic component
- 4. 2D Drawing from Simple 3D Object of Agriculture component..
- 5. Drawing of simple Storage Bin/Silo.
- 6. Drip Layout Sketch.
- 7. Drawing of Rooftop Garden Planning
- 8. Drawing of switch, Led monitor.
- 9. Drawing of Plug socket, Diode & Transistor.
- 10. House Wiring Diagram For a room having 1-Lamp, 1-Fan and 1-Plug socket.
- 11. 2D drawing of Disc Antenna, Common electronics components
- 12. 2D drawing of Electronics components symbol diagram with circuit.
- 13. Drawing Of All Simple Graphic Element & Monitor stand..
- 14. Drawing monitor
- 15. 2D drawing of Keyboard and CPU.

Type	Code		L-T-P	Credits	Marks
ES	BTES-P-ES-105	Workshop Practice –I Laboratory	0-0-3	1.5	100

,	The laboratory should help students to understand the role of different tools & its function for different operation by manually or by machine to get different job as required
Pre-Requisites	Knowledge of different geometry in Secondary Education
U	Regular practical classes with use of virtual labs and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	To make a Square from the given mild steel piece	3 Hours
Experiment-2	To make a V-Square fit from the given mild steel piece	3 Hours
Experiment-3	To prepare a Lap Joint with Electric Arc welding.	3 Hours
Experiment-4	To prepare a butt Joint with V-Groove Electric Arc welding. Method.	3 Hours
Experiment-5	To prepare butt/T-joint by gas welding	3 Hours
Experiment-6	To prepare joint by Soldering /Brazing.	3 Hours
Experiment-7	To prepare a job on given specimen in machine shop. (turning, threading ,knurling,milling,drilling and shaping	3 Hours
Experiment-8	To make the Mortise &tenon –joint wood	3 Hours
Experiment-9	To make the dovetail joint on wood.	3 Hours
Experiment-10	To make tray from sheet metal	3 Hours
	BEYOND SYLLABUS	3 Hours
Experiment-11	To make funnel in sheet metal	3 Hours
Total		33 Hours

After completing this course the students should be able to:

CO1	Learn the safety measures, different tools and equipment used in mechanical workshop.
CO2	Understand the concept of metal joining process and its engineering application.
CO4	Improve understanding of various fitting jobs & its application.
CO4	Understand the various machining process in Machine shop.
CO5	Learn Hands on practices & Job making in Carpentry Shop.

Indicative Projects

- 1. To make Gas cylinder stand by M.S. flat
- 2. To make Refrigerator stand by wooden plank
- 3. To make Wooden table
- 4. To make Partial Parshall flume (Venturi)
- 5. To make Drop spill way(wooden)
- 6. To make Indigenous plough(wooden)
- 7. To make Tray drier(sheet metal)
- 8. To make T.W. switch board for three switches and one socket
- 9. To make Sheet metal box to conduit wiring
- 10. To make Simple open water turbine
- 11. To make Soldering rod
- 12. To make Monitor stand
- 13. To make Phone or Tab stand
- 14. To make Support IOT kit implementation in ceiling fan hanging support rod
- 15. To make multimeter board.

Type	Code	English for Engineers –I (Laboratory)	L-T-P	Credits	Marks
BS	BTHS-P-HS-111	English for Engineers –1 (Laboratory)	0-0-2	1	100

	To develop the skills in communication.
	To evaluate the LSRW skills with efficiency.
Objectives	To distinguish the sub skills of reading comprehension for better understanding.
	To implement the process of effective writing.
Pre-Requisites	To have basic knowledge on LSRW skills
Teaching Pedagogy	Regular sessions are planned to be interactive with examples to be acquainted with different types of communication context.

SL N0	NAME OF THE ACTIVITY	HOURS
ACTIVITY 1	Ice Breaking & Self- Introduction	2 Hours
ACTIVITY 2	The Raman Effect, Reading: Task1- Task 3, Vocabulary: Task4- Task 5 (Prefixes and Suffixes)	2 Hours
ACTIVITY 3	The Raman Effect, Grammar: Identifying Common Errors in Writing. (Task 6 to Task 15)	2 Hours
ACTIVITY 4	The Raman Effect, Writing: (Task 16 to Task 29) Paragraph Writing	2 Hours
ACTIVITY 5	Ancient Architecture, Vocabulary: Task1 to Task 3 (Synonym and Antonym), Grammar: Subject-verb Agreement. (Task 4 to Task 7)	2 Hours
ACTIVITY 6	Ancient Architecture ,Writing: Task11 to Task 18 (Formal Letter an)	2 Hours
ACTIVITY 7	Sounds of English	2 Hours
ACTIVITY 8	Sounds of English	2 Hours
ACTIVITY 9	Role Play	2 Hours
ACTIVITY 10	Debate	2 Hours

CO1	Develop the understanding of language
CO2	Discuss the rules of language for effective communication
CO3	Analyze the pronunciation of English language
CO4	Recognize different forms of formal writing

Type	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTES-P-ES-203	Laboratory	0-0-4	2	100

Objectives Exploring basic data structures such as stacks and queues	
Pre-Requisites Knowledge of Mathematics in Secondary Education and basic Programming	
TeachingScheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.

Module-# Topics		Hours	
Experiment-1	Write a C program to perform matrix addition and multiplication using array	2Hours	
Experiment-2	Write a C program to create a stack using an array and perform		
	(i) push operation		
	(ii) pop operation		
Experiment-3	Write a C program to create a queue and perform	2Hours	
	(i) Push		
	(ii) Pop		
	(iii) Traversal		
Experiment-4	Experiment-4 Write a C program that converts infix expression into postfix expression		
Using Stack operations.			
Experiment-5	Write a C program that evaluates postfix expression using Stack operations	2Hours	
Experiment-6	Write a C program that uses functions to perform the following operations on	2Hours	
	Single linked list:		
	(i) Creation		
	(ii) Insertion		
	(iii) Deletion		
	(iv) Traversal		
Experiment-7	Write a C program that uses functions to perform the following operations on	2Hours	
	Double linked list:		
	(i) Creation		
	(ii) Insertion		
	(iii) Deletion		
	(iv) Traversal in both ways		
Experiment-8	Write a C program that uses functions to perform the following operations on	2Hours	
	Binary Search Tree:		
	(i) Creation		

	(ii) Insertion			
	(iii) Deletion			
Experiment-9	Write a C programs that use both recursive and non-recursive functions to			
	perform the Linear search operation for a Key value in a given list of integers			
Write C program that use both recursive and non-recursive functions to				
	perform the Binary search operation for a Key value in a given list of			
	integers			
Experiment-10	Write a C program that implement Bubble Sort method to sort a given list of	2Hours		
	integers in descending order			
Experiment-11	Write a C program that implements Quick Sort method to sort a given list of	t of 2Hours		
	integers in ascending order			
Experiment-12	Write a C program that implements Insertion method to sort a given list of	2Hours		
	integers in ascending order			
Experiment-13	Write a C program that implements merge sort method to sort a given list of	2Hours		
	integers in ascending order			
Experiment-14	Write a C program that implements heap sort method to sort a given list of	2Hours		
	integers in ascending order			
Experiment-15	Write a C program that implements selection sort method to sort a given list	2Hours		
_	of integers in ascending order			

CO1	To insert and delete elements from appropriate position in an array.
CO2	To search an element and print the total time of occurrence in the array
CO3	To represent a Sparse Matrix.
CO4	To delete all occurrence of an element in an array.
CO5	Array implementation of Stack.
CO6	Array implementation of Linear Queue.

Indicative Projects Arduino based Project

- 1) Contacts directory System
- 2) Texting editor relied on Stacks
- 3) BST which follows the Memorization procedure
- 4) Search system (in Library)
- 5) Snakes and Ladders Game
- 6) Sorted_double_sentinel_list
- 7) Phone directory application using doubly-linked lists
- 8) Spatial indexing with quadtrees
- 9) Numerical representations with random access lists
- 10) Stack-based text editor
- 11) Personal Diary Management System

12)	Tic-Tac-Toe Game
13)	Tank Game
14)	Travel Agency Management System
15)	Pharmacy Management System

Type	Code		L-T-P	Credits	Mark
BS	BTBS-P-HS-211	English for Engineers –II (Laboratory)	0-0-2	1	100

Objectives	To equip the students with different forms of professional writing To acquaint them with interpersonal etiquette to face corporate challenges To understand the nuances of GD-PI	
Pre-Requisites	Basic knowledge of applications of communication	
Teaching Pedagogy	Application oriented, task based, need based, teaching Pedagogy	

Activity No	Activity Name	Hours
Activity: 1	Blue Jeans Sub Skills of Reading: Task14- Task 15	2 Hours
Activity:2	How a Chinese Billionaire Built Her Fortune Vocabulary: Task1 to Task 3 (Technical and Computer related Terms)	2 Hours
Activity:3	How a Chinese Billionaire Built Her Fortune Writing: Task12 to Task 14(Report)	2 Hours
Activity:4	Sop practice,	2 Hours
Activity:5	Proposal Writing	2Hours
Activity:6	Oral Presentation 1	2 Hours
Activity:7	Oral Presentation 2	2 Hours
Activity:8	Group Discussion1	2 Hours
Activity:9	Group Discussion 2	2 Hours
Activity:10	Mock Interview	2 Hours
Total		20 Hours

CO1	Develop knowledge in interpersonal communication.
CO2	Develop skills for corporate readiness.
CO3	Implement the different forms of professional correspondence.
CO4	Apply English grammar and essentials of language skills as per present requirement.

Part 2 2nd Year B. Tech. (Computer Engineering)

Contents

Second Year

Curriculum Structure

B. Tech (CE) (3rd Semester & 4th Semester)

Curriculum Structure2Evaluation Process8Detailed SyllabusTheoryPage NoMathematics for Computer Science10Database Management Systems12Digital Logic Design14Organizational Behavior16Object Oriented Programming using JAVA19Ability Enhancement Training -B21Design and Analysis of Algorithms29Computer Organization and architecture31Digital Signal Processing33Engineering Economics and Costing35Python37NPTEL39Ability Enhancement Training -C40Practical
Detailed SyllabusTheoryPage NoMathematics for Computer Science10Database Management Systems12Digital Logic Design14Organizational Behavior16Object Oriented Programming using JAVA19Ability Enhancement Training -B21Design and Analysis of Algorithms29Computer Organization and architecture31Digital Signal Processing33Engineering Economics and Costing35Python37NPTEL39Ability Enhancement Training -C40Practical
TheoryPage NoMathematics for Computer Science10Database Management Systems12Digital Logic Design14Organizational Behavior16Object Oriented Programming using JAVA19Ability Enhancement Training -B21Design and Analysis of Algorithms29Computer Organization and architecture31Digital Signal Processing33Engineering Economics and Costing35Python37NPTEL39Ability Enhancement Training -C40Practical
Mathematics for Computer Science10Database Management Systems12Digital Logic Design14Organizational Behavior16Object Oriented Programming using JAVA19Ability Enhancement Training -B21Design and Analysis of Algorithms29Computer Organization and architecture31Digital Signal Processing33Engineering Economics and Costing35Python37NPTEL39Ability Enhancement Training -C40Practical
Mathematics for Computer Science10Database Management Systems12Digital Logic Design14Organizational Behavior16Object Oriented Programming using JAVA19Ability Enhancement Training -B21Design and Analysis of Algorithms29Computer Organization and architecture31Digital Signal Processing33Engineering Economics and Costing35Python37NPTEL39Ability Enhancement Training -C40Practical
Digital Logic Design 14 Organizational Behavior 16 Object Oriented Programming using JAVA 19 Ability Enhancement Training -B 21 Design and Analysis of Algorithms 29 Computer Organization and architecture 31 Digital Signal Processing 33 Engineering Economics and Costing 35 Python 37 NPTEL 39 Ability Enhancement Training -C 40 Practical
Organizational Behavior 16 Object Oriented Programming using JAVA 19 Ability Enhancement Training -B 21 Design and Analysis of Algorithms 29 Computer Organization and architecture 31 Digital Signal Processing 33 Engineering Economics and Costing 35 Python 37 NPTEL 39 Ability Enhancement Training -C 40 Practical
Object Oriented Programming using JAVA Ability Enhancement Training -B Design and Analysis of Algorithms Computer Organization and architecture 31 Digital Signal Processing 33 Engineering Economics and Costing Python NPTEL Ability Enhancement Training -C 40 Practical
Ability Enhancement Training -B Design and Analysis of Algorithms Computer Organization and architecture 31 Digital Signal Processing Engineering Economics and Costing Python NPTEL Ability Enhancement Training -C Practical 21 22 33 40 Practical
Design and Analysis of Algorithms Computer Organization and architecture Digital Signal Processing Engineering Economics and Costing Python NPTEL Ability Enhancement Training -C Practical 29 31 32 33 33 40 Practical
Computer Organization and architecture 31 Digital Signal Processing 33 Engineering Economics and Costing 35 Python 37 NPTEL 39 Ability Enhancement Training -C 40 Practical
Digital Signal Processing Engineering Economics and Costing Python NPTEL Ability Enhancement Training -C Practical 33 40 Practical
Engineering Economics and Costing Python NPTEL Ability Enhancement Training -C Practical 35 40 Practical
Python 37 NPTEL 39 Ability Enhancement Training -C 40 Practical
NPTEL 39 Ability Enhancement Training -C 40 Practical
Ability Enhancement Training -C Practical 40
Practical

$\mathbf{p}_{\mathbf{r}}$
Database Management System Lab 23
Digital Logic Design Lab 24
Object Oriented Programming using JAVA Lab 25
Seminar-I 26
Evaluation of Summer Internship -I 24
Design and Analysis of Algorithms lab 42
Computer Organization and architecture Lab 43
Python Lab 44
Project-III 45

Type	Code	Mathematics for Computer	L-T-P	Credits	Marks
BS	BTBS-T-BS-301	Science	4-1-0	3	200

Objectives	 The objective of this course is to familiarize the students with the knowledge and concepts of Laplace transformation. To familiarize the students with the knowledge and concepts of Fourier series To be familiar with the concept of discrete mathematics.
Pre-Requisites	A basic knowledge of relation, function, derivative, and integration.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Module Topics		Hours
Module-1	Laplace transformation, Inverse Laplace transformation, Unit step function, Dirac's delta function, Convolution, applications in solving differential equations, and Integral Equations	
Module-2	ule-2 Fourier series, Fourier expansion of functions of any period, Even and odd functions, Half range Expansion.	
Wiodule-3	Fourier Integral, Fourier transform, Fourier sine and cosine transforms, Basic propreties.	
Module-4 Relation and Functions: Properties of binary relations, Reflexive, Symmetric, Partial Ordering and Total Ordering, Equivarielations, Closure of relations, Warshall's algorithm.		9 Hours
Module-5	Lattices and Properties, Boolean Algebra: Basic Properties, CNF and DNF, K- map.	7 Hours
Module-6 Numeric and Generating Functions: Discrete Numeric Functions, Generating Functions, Recurrence relations: Linear recurrence relations with constant coefficients, Solution of recurrence relations (Homogeneous and Non-homogeneous) by the method of generating functions.		9 Hours
	Total	45

Text	Text Books:		
1	Advanced Engineering Mathematics, E. Kreyszig, Wiley India, ISBN 13: 9780470458365.		
2	"Fundamentals of Database System", R.Elmasri, S.B Navathe, Adision Wesley Publishing, ISBN-13: 978-0-136-08620-8 1.		
3	Discrete Mathematics and its Applications, Kenneth H. Rosen, Tata McGraw Hill, 5 th Edition, 2003, ISBN-13. 978-0070681880.		
4	Elements of Discrete Mathematics: A computer Oriented Approach, C. L. Liu, D. P. Mohapatra, McGraw Hill Education (India) Private Limited, 4th Edition, 2013, ISBN-13. 978-1259006395.		
Refe	Reference Books:		
1	Engineering Mathematics, S. Pal and S. C. Bhunia, Oxford University Press, ISBN-13: 978-1680921229.		
2	Advanced Engineering Mathematics, P. V. O'Neil, Cengage Learning, ISBN-13. 978-0470458365.		
3	Higher Engineering Mathematics, B. S. Grewal, Khanna Publication, ISBN-13. 978-8174091956.		
4	Graph Theory with applications to Engineering & Computer Science, N. Deo, Prentice Hall of India, 2006, ISBN-13: 978-8120301450.		
5	Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay and R.Manohar, Tata Mc-Graw Hill, 2001, ISBN-13. 978-0074631133.		
6	Discrete Mathematics, S. Lipschutz, Tata McGraw Hill, 2005, ISBN-13. 978-1930190863.		
7	Discrete Mathematics for Computer Scientists & Mathematics, Joe L. Mott, A. Kandel, and T. P. Baker, Prentice Hall of India, 2nd Edition, 2006, ISBN-13. 978-9332550490.		

Online Resources:

- 1. https://nptel.ac.in/courses/111104075/
- 2. https://nptel.ac.in/courses/111104078/
- 3. https://nptel.ac.in/courses/111104092/
- 4. https://nptel.ac.in/courses/122104017/
- 5. https://nptel.ac.in/courses/122104017
- 6. https://nptel.ac.in/courses/111102111/
- 7. https://nptel.ac.in/courses/111105035/287
- 8. https://nptel.ac.in/courses/111105035/28

CO1	Understand Laplace transforms and their applications.
CO2	Apply Fourier series and Fourier Transform of a given function appropriately
CO3	Understand the special functions.
CO4	Know about relation and function with their applications.
CO5	Understand generating functions, recurrence relations & their applications in computer
	science.
CO6	Understand discrete numeric functions and generating functions and their
	applications.

Type	Code	Database Management	L-T-P	Credits	Marks
CS	BTCS-T-PC-302	Systems	3-0-0	3	200

Objectives Pre-Requisites	 Understand the relational database design principles. Familiar with the basic issues of transaction processing and concurrency control. Familiar with database storage structures and access techniques. Fundamental computer knowledge that includes concepts of computer architecture, storage and hardware. Knowledge of MS Excel or other Tabular formats.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with focus on real-life problem-solving activities.

Module	Topics	Hours
Module-1	Introduction to DBMS: Database applications, purpose, accessing and modifying databases, need for transactions; Types of DBMS: Data models, DB languages; Architecture: Users and administrators, 3-schema architecture of DBMS, data independence, EF Codd Rule.	06 Hours
Module-2	ER Model: Basic concepts, Design issues, keys, ER diagram, Entity types, Attributes, Relationships, Relationship types, Weak entity sets, Extended ER features; Relational model: Structure of relational model, Relational algebra, Extended relational algebra Operations.	07 Hours
Module -	Relational database design: Features of good design, Properties of Relational Decomposition, Functional Dependency; Anomalies in designing DB: Normalization using FDs, Various Normal forms-1NF, 2NF, 3NF, BCNF, Concepts of 4NF, 5NF.	08 Hours
Module -	SQL and Integrity Constraints: Concepts of DDL, DML, DCL; SQL operations: Set operations, Aggregate functions, Constraints, View, Nested sub-queries,.	
Module -	PL/SQL, cursor, trigger. Internals of RDBMS: Query optimization, various optimization algorithms.	06 Hours
Module -	Transaction processing: Transaction processing and Error recovery - concepts of transaction processing, ACID properties, concurrency control, locking based protocols for CC, error recovery and logging, undo, redo, undo-redo logging andrecovery methods.	07 Hours
	Total	40 Hours

Text Books:		
1	"Database system concepts", Korth, Silverschatz, Abraham, Tata McGraw Hill Publication, ISBN-13. 978-0078022159.	
Reference Books:		
1	"Database management systems, A Practical Approach", Er.Rajiv chopra, S.Chand Publishing, ISBN-13 978-0071168984	
2	"Fundamentals of Database System", R.Elmasri, S.B Navathe, Adision Wesley Publishing, ISBN-13. 978-0133970777.	
3	"Database management systems", Ramkrishna, Tata McGraw Hill Publication, ISBN-13. 978-0072465631.	

CO1	Understand data models to design a database.
CO2	Illustrate the conceptual design for large enterprises.
CO3	Formulate SQL queries and integrity constraints over relations.
CO4	Apply normalization on database for eliminating redundancy.
CO5	Summarize transaction properties, concurrency control and recovery techniques.
CO6	Explain various data storage and security mechanisms.

Type	Code	Digital Logic Design	L-T-P	Credits	Marks
OE	BTEC-T-OE-303		3-0-0	3	200

Objectives	 1-To study presentation of various signals in time and spectrum domains, and stability & amp; causality of LSI systems, 2-To study processing of digital signal using Z-transform, discrete Fourier transform. 3-To design IIR & amp; FIR filters
Pre-Requisites	Basic Electronics
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Number System: Introduction to various number systems and their Conversion. Arithmetic Operation using 1's and 2's Compliments, Signed Binary and Floating-Point Number Representation. Introduction to Binary codes and their applications. Boolean Algebra and Logic Gates: Boolean algebra and identities, Complete Logic set, logic gates and truth tables. Universal logic gates, realization using universal logic gates.	
Module-2	Algebraic Reduction, Canonical Logic Forms, Extracting Canonical Forms, NAND and NOR Logic Implementations, K-Map, QM Method. Combinational Logic Design: Analysis, Design: Specifying the Problem, Concept of Digital Components	8 Hours
Module-3	Binary Adders, Subtraction and Multiplication, An Equality Detector and comparator, Line Decoder, encoders, Multiplexers and De-multiplexers. Hazards and Hazard free circuits. Sequential Logic Design: Flip flop and Timing circuit: set-reset laches, D-flip flop, R-S flip-flop, J-K Flip-flop, Master slave Flip flop, edge triggered flip-flop, T flip-flop	8 Hours
Module-4	Serial in/Serial out shift register, Serial in/Serial out shift register, Serial in/parallel out shift register, parallel in/ parallel out shift register, parallel in/Serial out shift register, Bi-directional register.	6 Hours
Module-5	Analysis, Design: Registers & Counters: Synchronous/Asynchronous counter operation, Up/down synchronous counter, application of counter, Johnson counter, ring counter, sequence generator	6 Hours
Module-6	Semiconductor Memory: Static and Dynamic memory. RAM and ROMs, Programmable Logic Array, Programmable Array Logic.	6 Hours
	TOTAL	40 Hours

Text Bool	Text Books:		
1	Digital Design, 3rd Edition, Moris M. Mano, Pearson Education, ISBN 13: 9788183335805.		
2	A First Course in Digital System Design: An Integrated Approach, India Edition, John P,. Uyemura, PWS Publishing Company, a division of Thomson Learning Inc, ISBN-13: 978-0534934125.		
Reference	e Books:		
1	Fundamentals of digital circuits, 8th edition, A. Anand Kumar, PHI, ISBN-13: 978- 8120352681		
2	Digital Fundamentals, 5th Edition, T.L. Floyd and R.P. Jain, Pearson Education, New Delhi, ISBN-13: 978-1639043569.		
3	Digital Electronics, G. K. Kharate, Oxford University Press, ISBN-13 978-9350141991		
4	Digital Systems – Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and Gregory L. Moss, Pearson Education, ISBN-13 978-0750645829		

	Understand the basic components and laws of digital circuits.
CO2	Learn the representation and simplification of digital circuits
CO3	Analyze and design various Combinational circuits.
	Analyze and design various Sequential circuits.
CO5	Apply the HDL for digital circuits.
CO6	Validate combinational logic circuits using programmable logic devices.

Type	Code	Organizational Behavior	L-T-P	Credits	Marks
HS	BTBS-T-HS-304		3-0-0	3	200

Objectives	 To understand the concepts and theories useful for diagnosing human behavior in modern-day organizations. To examine different aspects of organizational structure such as formation of organizational systems, structure, and processes. To develop an understanding of these theories and of related ideas and concepts and critically evaluate them. To develop skills to deeply analyze human behavior and apply the learning's to organizational context. Understanding the group dynamics and Leadership in the Organization.
Pre-Requisites	To stimulate specific goals and achieve optimal performance from workers, it is useful to explore ways of stimulating fruitful behaviors from workers by studying organizational behavior.
Teaching Pedagogy	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with focus on real-world problem solving through case lets.

		Hours
	Introduction- Nature, Scope, Purpose, Function, Elements of OB. Evolution of OB - Classical, Scientific, Administrative, Human Relation Movement, Bureaucracy, System Theory. Contribution to the field of Management by different Disciplines, Model of OB, Application of OB. Case Let.	10 hours
	Perception & Learning- Understanding of perception and its basic elements, perceptual selection, social perception, self –perception and identity, perceptual biases. Learning in organization and classical and operant conditioning. Personality- Meaning of Personality, Personality Development, Determinants of personality, Personality Theories, Self-esteem & Determinants, Application of personality in the organizational level. Case Let.	10 hours
	Motivation- Concept of motivation, motivation and behavior, Misbehavior, Types of motives, Management Intervention. Theories of motivation, Need theory, Hygiene theory, Theory X and Theory Y, ERG Theory, Vroom's Expectancy Theory, Equity Theory, Elements of sound motivational system, Money as a motivator, Motivation in Indian organization. Case Let.	6 hours
:	Attitude- Definition, key elements and related concepts (value, opinion, belief and ideology), characteristics of attitudes, attitude formation and measurement, changing attitude, attitude at workplace (job satisfaction, work attitude and organizational commitment). Emotions at workplace: Definition, types, related concepts (mood, temperament), Managing emotions at workplace, emotional intelligence, meaning of stress, Work Stressors, Stress at work place, General Adaption syndrome, emotional labor, Balancing work and Life. Case Let.	4 hours

Module 5	Leadership- Meaning, Leader Vs. Manager, leadership theories, Leadership styles, Leadership in Indian Organization. Group Dynamics- Define Groups & Decisions, Types of Group, Group Behavior, Group Formation, Group Decisions, and Techniques to improve group decision, merits and de-merits of group decision. Case Let.	6 hours
Module 6	Organizational Change- Meaning and Nature of organizational change, Factors of organizational change, Resistance to change, Managing resistance to change, Overcoming resistance to change. Organizational culture- Impact of culture on individuals, Cultural dimensions, Types of culture.	4 hours
	Total	40 hours

Text	Text Book		
1	A Textbook of Organizational Behavior, by S.S. Khanka, S Chand, ISBN-13 8121943017		
Refe	rence Books		
1	Organizational Behavior, K. Aswathappa, Sadhana Dash, Himalaya Publishing House, ISBN-13. 978-0201154610.		
2	Organizational Behavior. Arun Kumar and N. Meenaskshi .Vikas Publishing House, 2009, ISBN-13. 978-0201154610.		
3	Managing Organizational Behavior, Moorhead & Griffin. CENGAGE Learning, 2014, ISBN-13: 978-0136124436.		
4	Human Behavior at Work. Keith Davies, 2002, ISBN-13. 978-0750645829.		
5	Understanding Organizational Behavior. Pareek, U. Oxford University Press, (2012), ISBN-13: 978-0198070733.		
6	Organizational Behaviour, M. N. Mishra, Vikas Publishing House, ISBN-13. 978-0201154610.		
7	Organizational behavior , N. Kumar & R. Mittal, Anmol Publication, ISBN-13. 978-0201154610.		
8	A Textbook of Organizational Behavior , C. B. Gupta, S Chand, ISBN-13 8121943017		
9	Organizational Behaviour, Robbins/Vohra, Pearson, ISBN-13. 978-0201154610.		

CO1	Discuss the development of the field of organizational behavior and explain the micro andmacro approaches.
CO2	Analyses and compare different models used to explain individual behavior
	related tomotivation and rewards.
CO3	Explain group dynamics and demonstrate skills required for working in groups.
CO4	Identify the various leadership styles and the role of leader in a decision-making process.
CO5	Explain organizational culture and describe its dimensions and to examine various
	Organizational designs.
CO6	Discuss the implementation of organizational change.

Type	Code	Object Oriented	L-T-P	Credits	Marks
PC	BTCS-T-PC-305	Programming using	3-0-0	3	200
		JAVA			

Objectives	 To learn why Java is useful for the design of desktop and web applications. 		
	 To learn how to implement object-oriented designs with Java. To identify Java 		
	language components and how they work together in applications.		
	 To design and program stand-alone Java applications. 		
Pre-Requisites	Knowledge of programming in 'C'		
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned		
Pedagogy	Pedagogy to be interactive with focus on real- life problem- solving		
	activities.		

Module	Topics	
Module-1	Module-1 Object oriented paradigm: structured versus object-oriented development, Introduction to Object oriented programming concepts: Objects, classes, encapsulation and abstraction, inheritance, polymorphism, dynamic binding, message passing. Executing the program, Architecture of JVM. Understanding First Program and a step forward, Java Tokens, Data types, Operators, Typecasting, Control Structures and Arrays, Conditional Statements, Jumping Statements.	
Module-2	Java I/O: Taking Input from keyboard, Command Line Arguments, Using Scanner Class, Using Buffered Reader class. Object and Classes: class and object, functions and data members, static members. Constructors - default constructor, parameterized constructor.	06 Hours
Module-3	 Inheritance: Derived and base classes, public, private, and protected derivations, constructors in derived classes, Constructor call in Inheritance, super keyword, this keyword. Data Abstraction: Basics of Data Abstraction, Understanding Abstract classes, Understanding Interfaces, Multiple InheritanceUsing Interfaces. 	06 Hours
Module-4	Polymorphism: Types of polymorphism, Significance of Polymorphism in Java, Method Overloading, Constructor Overloading, Method Overriding, Dynamic Method Dispatching. String Manipulations: Introduction to different classes, String class, String Buffer, String Builder, String Tokenizer. Wrapper Classes: Introduction to wrapper classes, Different predefined wrapper classes. Conversion of types from one type (Object) to another type (Primitive) and Vice versa, Concept of Auto boxing and unboxing.	06 Hours

Module-5	Packages: Introduction to Packages, Java API Packages, User-Defined Packages, Accessing Packages. Multithreading: Thread in Java, Thread naming and Priorities, Thread execution prevention methods. (yield (), join (), sleep ()), Concept of Synchronization, Inter Thread Communication, Basics of Deadlock, Demon Thread.	06 Hours
Module-6	Exception handling: Error and Exception Handling, Types of exceptions, Hierarchy of Exception classes, Default exception handling in Java, User defined/Customized Exception Handling (try, catch, finally, throw, throws). Abstract Window Toolkit (AWT): Description of Components and Containers, Component/Container hierarchy, Understanding different components/Container classes and their constructors, swing.	08 Hours
	Total	40
		Hours

Tex	Text Book		
1	JAVA Complete Reference (9th Edition), Herbal Scheldt, ISBN-13: 978-1260440232.		
Ref	Reference Books		
1	CORE JAVA For Beginners. (Rashmi Kanta Das), Vikas Publication, ISBN-13: 978-8125950837		
2	Programming in Java. Second Edition. OXFORD HIGHER EDUCATION. (SACHIN MALHOTRA / SAURAV CHOUDHARY), ISBN-13:978-8120352872		
3	Effective Java 3rd Edition ,Joshua Bloch (Author), ISBN-13: 978-0134685991		
4	Java For Dummies 6th Edition, Barry A. Burd (Author), ISBN-13: 978-1119680451		

CO1	Understand the Object-oriented programming concepts and every term of the program.
CO2	Test and execute the programmers by Object and Class and implement inheritance property.
CO3	Implement polymorphism and string manipulation.
CO4	Determine data abstraction and wrapper classes to achieve code reusability.
CO5	Analyze the multithreading and package implementation.
CO6	Understand the hierarchy of file stream classes and the concept of exception handling.

Тур	Code	A DITE POSZ JENITE A NICHEN PENTER PED A TRIUNIC	L-T-P	Credits	Marks
SC	BTSC-T-SC-306	ABILITY ENHANCEMENT TRAINING- B	1-0-0	1	200

Objectives	 The course aims at imparting basic principles of thought process, reasoning and inferencing. Sustainability is at the core of Indian Traditional Knowledge Systems connecting society and nature. Holistic lifestyle of Yogic-science and wisdom capsules in Sanskrit literature are also important in modern society with rapid technological advancements and societal disruptions. The course focuses on introduction to Indian Knowledge System, Indian perspective of modern scientific world-view and basic principles of Yoga and holistic health care system.
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with focus on real-life problem - solving activities.

Module #	Topic	Hours
Module 1	Introduction to traditional knowledge- Knowledge- Nature and Characteristics- Scope and Importance-kinds of Traditional Knowledge- The historical impact of social change on Traditional Knowledge Systems- Value of Traditional knowledge in global economy.	05 Hours
	Basic structure of Indian Knowledge System Veda - Rigveda,	03 Hours
Module 2	Samaveda, Yajurveda, and Atharvaveda	
Module 3	Upaveda (Ayurved, Dhanurveda, Gandharva Veda & Sthapatyaveda)	03 Hours
Module 4	Vedanga- (Shiksha,, Kalpa, Nirukta, Vyakarana, Jyotisha, Chanda)&	03 Hours
	Upanga - (Dharmashastra, Meemamsa, purana & Tarka Shastra)	
Module 5	Modern Science and Indian Knowledge System	03Hours
Module 6	Yoga and Holistic Health	03 Hours
	Total	20 Hours

Text B	Text Book	
1	Quantitative Aptitude ,R S Aggarwal, ISBN-13: 978-0199488780.	
2	Quantitative Aptitude for CAT, Arun Sharma, ISBN-13: 978-9355321626.	
Refere	Reference Books	
1	Fast Track Objective Arithmetic , Arihant Publications, ISBN-13: 978-9312149836.	

CO1	Identify Basic Organization of Computers.
CO2	Identify the addressing modes used in macro instructions.
CO3	Apply algorithms for arithmetic operations and implementation for ALU design.
CO4	Develop micro code for typical instructions in symbolic form.
CO5	Develop the pipeline and its performance.
CO6	Identify Characteristics of Memory System.

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-	ENVIRONMENTAL ENGINEERING	3-1-0	3	150
	MC-302				

Objectives	1. To Assess societal, health, safety and legal issues by applying Environmental
	Engineering knowledge.
	2. To Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions
	3. To Identify, formulate, review research literature and analyze complex Environmental Engineering problems using fundamentals of mathematics, sciences and engineering.
	4. To Develop solutions for Environmental Engineering problems and design system components and processes to meet the specified needs with appropriate consideration
	for the public health and safety.
	5. To Apply the knowledge of mathematics, Science and Engineering fundamentals for
	solution of problems of Environmental Engineering.
Pre-Requisites	Knowledge of Science and technology in Secondary level.
Teaching Pedagogy	Regular class room lectures with use of ICT and when required, sessions are planned
	to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module -1	Ecology & Ecosystem: Components . Ecological concepts and natural Resources: Ecological perspective and value of environment, Environmental auditing, Biotic components, Levels of organizations in environment Ecosystem Process: Energy, Food chain, Environmental gradients, Tolerance levels of environmental factor. Components of Earth System: Lithosphere, Cryosphere, Atmosphere, Hydrosphere, Biosphere and Outer space.	10 Hours
Module -2	Environmental Resources: Natural Resources covering Renewable and Non-renewable Resources, Forests, water, minerals, Food and land (with example of one case study); Energy, Growing energy needs, energy sources (conventional and alternative). Hydrological cycle, water balance,	6 Hours
Module -3	Environmental Pollution: Definition, Causes, effects and control measures of: Water pollution, Air pollution, Noise pollution, Soil pollution, Marine pollution, Thermal pollution.	10Hours

Module -4	Environmental Issues : Climate change, Global warming, Acid rain, Ozone layer depletion, Water conservation, rain water harvesting, artificial recharge, watershed management, carbon trading, carbon foot print National Ambient Air quality Standards, Noise standards, Vehicle emission standards	7 Hours
Module -5	Drinking water standard (IS 10500), Water Quality Criteria Water treatment: Water sources and their quality, Lay out of a water treatment plant and working of each unit/principles of each process i.e. Screening, Aeration, Sedimentation, coagulation, flocculation, Filtration, Disinfection.	5 Hours
Module -6	· · · · · · · · · · · · · · · · · · ·	
	Total	44 Hours

Text Books:

1 Environmental Engineering, G. Kiely, TMH, 2007

Reference Books:

- 1 Environmental Engineering, H.S. Peavy, D.R.Rowe and G. Tchobanoglous, McGraw Hill, 1985.
- Introduction to Environmental Engineering, M. L. Davis and D. A Cornwell, McGraw Hill International,2005.

CO1	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.
	Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions
CO2	
CO3	Identify, formulate, review research literature and analyze complex Environmental Engineering problems using fundamentals of mathematics, sciences and engineering.
CO4	Develop solutions for Environmental Engineering problems and design system components and processes to meet the specified needs with appropriate consideration for the public health and safety.
CO5	Apply the knowledge of mathematics, Science and Engineering fundamentals for solution of problems of Environmental Engineering.
CO6	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.

Type	Code	Database Management	L-T-P	Credits	Marks
PC	BTCS-P-PC-302	Systems Lab	0-0-3	1	200

Objectives	To expose to the field of Database.
Pre- Fundamental computer knowledge that includes concepts of computer architecture	
Requisites	storage and hardware. Knowledge of MS Excel or other Tabular formats.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned
Pedagogy	to be interactive with focus on real-life problem-solving activities.

Lab	Name of the experiments	Hours
No:		
1	Execute DDL Commands	2 Hours
2	Execute DML Commands	2 Hours
3	Execute DCL and TCL Commands.	2 Hours
4	Create table using constraints.	2 Hours
5	Create views, partitions and locks for a particular DB	2 Hours
6	Execute joins (Inner and Outer) for 2 tables.	2 Hours
7	Write PL/SQL procedure for an application using cursors.	2 Hours
8	Write a PL/SQL block for transaction operations of a typical application using triggers.	2 Hours
9	Write a PL/SQL block for transaction operations of a typical application using package.	2 Hours
10	Write a PL/SQL procedure for an application using exception handling.	2 Hours

Text Books: Database Management Systems Lab Manual, Department of CSE, GIFT, Bhubaneswar, ISBN-13: 979-8846287921

CO1	Illustrate ER model and identify the roles and privileges of various users in a database.		
CO2	Apply common SQL statements (including DDL, DML and DCL) to perform different operations.		
CO3	Construct SQL Queries for various operations on database.		
CO4	Interpret Embedded and Nested Queries.		
CO5	Implement control statements in PL/SQL.		
CO6	Apply triggers and assertions to stop malicious operations on tables.		

Type	Code	Digital Logic Design Lab	L-T-P	Credits	Marks
OE	BTEC-P-OE-303		0-0-2	1	100

Objectives	 The objective is to analyze the designing process of combinational and sequential circuits, express arithmetic logic and shift micro-operations. To identify the addressing modes used in macro instructions To apply algorithms for arithmetic operations and implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to
	be interactive with different examples

Lab	Name of the experiments	
No:		
1	Investigate logic behavior of NOT, AND, OR, NAND, NOR, EX-OR, EXNOR gates.	2 Hours
2	Gate-level minimization: Two level and multi-level implementation of Boolean functions.	2 Hours
3	Implementation using universal gates.	2 Hours
4	Combinational Circuits: design, assemble and test: adders and subtractors, code converters	2 Hours
5	Design of multiplexers and de-multiplexer	2 Hours
6	Flip-Flop: assemble, test and investigate operation of SR, D & J-K flip-flops.	2 Hours
7	Shift Registers: Design and investigate the operation of all types of shift registers with Parallel load.	2 Hours
8	Study and design of Asynchronous Counters.	2 Hours
9	Study and design of synchronous Counters.	2 Hours
10	Clock-pulse generator: design, implement and test	2 Hours
11	Design and implement a circuit that multiplies 4-bit unsigned numbers to produce a 8-bitproduct.	2 Hours
12	VHDL simulation and implementation of adder.	2 Hours

Text Books:

1

Digital Electronics Circuit Lab Manual, Department of ECE, GIFT, Bhubaneswar, ISBN-13. 978-1648282270.

Type	Code	Object Oriented Programming	L-T-P	Credits	Marks
PC	BTCS-P-PC-305	with JAVA Lab	0-0-3	1	100

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
Teaching Pedagogy	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real-life problem-solving activities.

Lab No:	Name of the experiments	Hours
1	Introduction, compiling and executing java program	2 Hours
2	Programs related to different data types, variables, constants, operators	2 Hours
3	Conditional statements, control structures (while, do-while, for) Jumping statements	2 Hours
4	Array and multidimensional array	2 Hours
5	Object, class and Constructors	2 Hours
6	Inheritance, Interfaces and multiple inheritance	2 Hours
7	Polymorphism (method overloading and method overriding)	2 Hours
8	String Manipulations, Wrapper Class, Package.	2 Hours
9	Java threads (yield (), join (), sleep ()), Concept of Synchronization, Inter Thread Communication)	2 Hours
10	Exception handling, AWT, Event Handling.	2 Hours

Text Books:

Object Oriented Programming with JAVA Lab Manual, Department of CSE, GIFT, Bhubaneswar

CO1	Using object-oriented features, such as abstraction, inheritance, polymorphism etc. for writing
	effective programs.
CO2	Understand and compile code under java programming environment. (Using different data types, control structure and arrays)
CO3	Apply polymorphism and string concept to solve a problem in real world.
CO4	Develop own package and apply thread synchronization using multi-threading concept.
CO5	Recommend different error handling methods to handle the exception and make the java program more efficient.
CO6	Create API to design web based as well as stand-alone applications. (Using AWT and Swing)

Type	Code	SEMINAR-I	L-T-P	Credits	Marks
PS	BTCS-P-PS-307		0-0-3	1	100

Objectives	 To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
Pre-Requisites	Knowledge of Speaking with globally accepted language and subject analysis.
Teaching Pedagogy	Regular seminar presentation and evaluation with record keeping.

CO1	Outline the topics on modern technology; prepare implementation of the same as the presentation.	
CO2	Understanding the technologies used by extracting the new things to be implemented by reviewing the	
	journals/research papers.	
CO3	Sketch the application of the technology for the use of the mankind.	
CO4	Analyse and correlate the new technology with the subject of interest for further study.	
CO5	Evaluate, plan and reframe the technology with the communication skills for a better explanation	
CO6	Modify and design the concept into the realistic world.	

Type	Code	Evaluation of Summer	L-T-P	Credits	Marks
SC	BTCS-P-SC-308	Internship-1	0-0-3	1	100

Objectives	 To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models. 	
Pre-Requisites	Knowledge of Speaking with globally accepted language, subject analysis, practical implementation.	
Teaching Pedagogy	Regular contact with interns and evaluation with record keeping.	

METHOD OF EVALUATION:

- 1. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a duration of about 8 to 10 minutes.
- 2. In a session of one period per week, 5 students are expected to present the seminar.
- 3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.
- 4. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report.
- 5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 6. Evaluation is 100% internal.

CO1	State the functioning of organization and observe changes for self-improvement.
CO2	Explain how the internship placement site fits into a broader career field.
CO3	Apply appropriate workplace behaviors in a professional setting.
CO4	Solve real life challenges in the workplace by analyzing work environment and conditions, and
CO5	Evaluate the internship experience in terms of personal, educational and career needs.
CO6	Develop ideas for suitable startups to become successful entrepreneur.

Fourth Semester

Type	Code	Design and Analysis of	L-T-P	Credits	Marks
PC	BTCS-T-PC-401	Algorithms	3-0-1	3	150

Objectives	To Introduce various designing techniques and methods for algorithms	
	 Performance analysis of Algorithms using asymptotic and empirical approaches 	
	Demonstrate a familiarity with major algorithms and data structures.	
Pre-Requisites Knowledge of Mathematics in Secondary Education, Data Structure and Exposer to any		
	programming Language.	
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are	
Pedagogy	planned to be interactive with focus on real-life problem -solving activities.	

Module-#	Topics	Hours			
Module-1	Notion of Algorithm: Growth of functions, Recurrences: The Master method, The Substitution method, The Iteration method, Asymptotic Notations and Basic Efficiency Classes (Use of Big O, θ , etc.) in analysis of algorithms, Mathematical Analysis of Non-				
Module-2	Recursive and Recursive Algorithms. Divide and conquer approach: Disjoint Set and their Implementation, Divide and Conquer Paradigm of problem solving, Complexity analysis and understanding of Merge Sort, Quick Sort. Heaps and Heap Sort.	7 Hours			
Module-3	Dynamic Programming Paradigm : Floyd-War shall Algorithm, Optimal Binary Search trees, Matrix Chain Multiplication Problem, Longest Common Subsequence Problem, 0/1 Knapsack Problem, Maximum Network Flow Problem.	6 Hours			
Module-	Graph Algorithms and Greedy Techniques: DFS, BFS, Topological Sorting, Activity Selection Problem, Huffman Trees, Prim's Algorithm, Kruskal's Algorithm, Dijkstra's and Bellman Ford Algorithm, , Knapsack problem.				
Module-5	String Matching Algorithms: Naive string-matching algorithm, The Rabin- Karp Algorithm, string matching with Finite Automata, Knuth Morris Pratt string matching algorithm. Backtracking: n-Queen's problem, Hamiltonian Circuit problem, Subset-Sum problem, State Space Search Tree.	7Hours			
Module-6	Branch and Bound: Travelling Salesman Problem and its State Space Search Tree. Introduction to Computability: Polynomial-time verification, NP Completeness and Reducibility, NP-Complete problems (without proof). Approximation Algorithms: Vertex Cover Problem.				
	Total	40 Hours			

Tex	at Book
1	"Introduction to Algorithms", Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, Third Edition, PHI Learning Private Limited, 2012, ISBN-13. 978-0132316811.
Ref	erence Books
1	"Data Structures and Algorithms" Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, Pearson
1	Education, Reprint 2006, Data Structures and Algorithms, ISBN-13: 978-0201000238.
2	"The Art of Computer Programming" Donald E. Knuth, Volumes 1& 3 Pearson Education, 2009, ISBN-13: 978-0201896831.
4	"The Design and Analysis of Computer Algorithms" A.V. Aho, J. E. Hopcroft and J.D.Ullman, Pearson
4	Education, ISBN-13. 978-0201000290.
5	"Algorithms, Data Structures, and Problem Solving", by Illustrated Edition Mark Allen Weiss, Addison-
	Wesley Publishing Company,
	ISBN-13 ⁹⁷⁸⁻
	0805316667

0805316667

CO1	Define the various algorithm analysis methods and the asymptotic time complexities of various statements with its correctness.
CO2	Explain important algorithmic design paradigms (divide-and-conquer, greedy method, dynamic-programming and Backtracking) and apply when an algorithmic design situation calls for it.
CO3	Demonstrate the major graph algorithms and Employ graphs to model engineering problems, when appropriate.
CO4	Apply different data structures for problem solving and pick an appropriate data structure for a design situation.
CO5	Compare the classes P, NP, and NP Complete and be able to prove that a certain problem is NP-Complete.
CO6	Familiarizing students with specific algorithms for a number of important computational problems design and development.

Type	Code	Computer Organization and	L-T-P	Credits	Marks
PC	BTCS-T-PC-402	Architecture	3-0-1	3	150

Objectives	 To analyze the designing process of combinational and sequential circuits To express arithmetic logic and shift micro-operations, identify the addressing modes used in macro instructions To apply algorithms for arithmetic operations and implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with different examples

Module-#	Topics	Hours		
Module-1	Basic Organization of Computers: Classification Micro, Mini, Mainframe and Super Computer, Functional blocks of a computer, Bus Structure, Von- Neumann Architecture, Structure of IAS, CISC and RISC architectures and Computer Architecture.			
Module-2	Instruction Format: instruction set, Three Address, Two Address, One Address and Zero Address Instruction. Instruction execution cycle, Fetching and storing a word in Memory, Types of addressing modes.	05 Hours		
Module-3	Data representation: signed number representation, fixed and floating-point representations. Computer arithmetic – integer addition and subtraction multiplication -Booth multiplier, Fast multiplication, Division Algorithm, Floating Point Arithmetic Operation, Decimal Arithmetic Operation.			
Module - 4	Control Unit Operation: Hardware Control & Micro Programmed Control, Peripheral devices and their characteristics: Input-output subsystems, I/O organization, I/O device interface, interrupt driven and DMA Controller.			
Module - 5	Pipelining: Basic concepts of pipelining, Types of pipelining, representation of pipelining, throughput and speedup, pipeline hazards, Pipeline performance, Parallel Processors: Introduction to parallel processors and multi-core			
Module- 6	Memory Organization: Computers Memory System Overview, Characteristicsof Memory System, Memory Hierarchy, Main Memory types, Memory cell Operation. Cache Memory: Cache Principles, Elements of Cache Design, Cache Size, Cache Mapping function, Write policy, Introduction to flash memory.	08 Hours		
	Total	40 Hours		

Text Books:

1 Computer Organization – by V.CarlHamacher, Z.G.Vranesic, and S.G.Zaky, 5th Edition. McGraw Hill, ISBN-13: 978-8120332003.

Reference Books:

- 1 Computer System Architecture: Morris Mano, 3rd Edition, PHI, ISBN-13. 978-8126522842.
- 2 | Computer Organization & Architecture William Stallings, 7th Edition, PHI, ISBN-13. 978-9332518704.
- 3 Computer Architecture and Organization: An Integrated Approach, Murdocca, Heuring Willey India, ISBN-13. 978-1259028564.
- 4 Computer Organization Design, (3rd Edition) by D.A.Patterson & J.L.Hennessy Morgan Kaufmann Publishers (Elseviers), ISBN-13: 978-8120335110.
- 5 Computer Architecture and Organization, by John P. Hayes, 3rd Edition, Mc Graw Hill International Editions, ISBN-13. 978-1259028564.
- 6 Computer Architecture: Parhami, Oxford University Press, . ISBN-13: 978-9381068311.

CO1	Identify Basic Organization of Computers.
CO2	Identify the addressing modes used in macro instructions.
CO3	Apply algorithms for arithmetic operations and implementation for ALU design.
CO4	Develop micro code for typical instructions in symbolic form.
CO5	Develop the pipeline and its performance.
CO6	Identify Characteristics of Memory System.

Type	Code	Digital Signal Processing	L-T-P	Credits	Marks
OE	BTEC-T-OE-403		3-0-1	3	150

Objectives	To study the design techniques for FIR and IIR digital filters.	
1	 To study the finite word length effects in signal processing. 	
	 To study the properties of random signal, Multirate digital signal processing and about QMF filters. 	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education.	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planne be interactive with focus on problem solving activities.	

Module-#	Topic	Hours	
Module-1	Signals: Introduction, Classification: continuous/discrete-time signals, Representation of Discrete –time signals, Elementary Discrete –time signals, Classification of Discrete –time signals, Operation on Discrete –time signals. Systems: Introduction, Classification of Discrete –time systems: Static/Dynamic, Causal/Non-causal, Linear/Non-linear, Time-variant/time-invariant, FIR/IIR, Stable/Unstable; Representation of arbitrary sequence using impulse function, Impulse response, Convolution Sum, Properties of convolution, Correlation of two sequences.		
Module-2	The Z-Transform : Introduction, Definition of Z-Transform, Z-Transform and ROC of finite duration sequences, Z-Transform and ROC of infinite duration sequences, ROC of two-sided sequence, Stability and ROC, Properties of ROC,		
Module-3	Properties of the Z-transform, The System Function, Poles and Zeroes of a System function ,Stability Criterion .Inverse Z-Transform : Long Division Method, Partial fraction expansion method		
Module-4	The Discrete Fourier Transform: Introduction to DFT & IDFT, properties of DFT, Comparison between circular convolution and linear convolution, Circular convolution of two sequences,		
Module-5	Filtering long duration sequences(overlap add and overlap save), Efficient computation of DFT: Fast Fourier Transform (FFT) Algorithm (Radix-2 DIT and Radix-2 DIF).		
Module-6	Digital filters : Introduction(IIR/FIR filter),Realization of IIR filters :Direct form I, Direct form II, Signal flow graph, Transposed Structure , Cascade form, parallel form, Lattice structure, Lattice-Ladder Structure. Realization of FIR filters: Direct-Form Structure, Cascade-Form Structure, Linear phase, Lattice		
	Total	40 Hours	

Text Books:

- 1 J.G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms and applications, 4thEdition, Prentice Hall India, 2007.
- 2 A.V.Oppenheim, A.S.Willsky, and S.H.Nawab, Signals and Systems, 2nd Edition, Prentice Hall India, 1992.
- 3 | S.K.Mitra, Digital Signal Processing: A Computer Based Approach, 4thEdition, Mc Graw Hill, 2013

Reference Books:

- 1 L.R.Rabiner and B.Gold, Theory and Application of Digital Signal Processing, 2nd Edition, Prentice Hall India, 1992
- 2 J.R.Johnson, Introduction to Digital Signal Processing, 2nd Edition, Prentice Hall India, 1992.
- 3 A.N.Kani, Digital Signal Processing, 2nd Edition, McGraw Hill Education, 2017.
- 4 Computer Architecture and Organization, by John P. Hayes, 3rd Edition, Mc Graw Hill International Editions
- 5 P.R. Babu, Digital Signal Processing, 4th Edition, Sci tech Publication, 2011.

CO1	Describe different types of signals, systems and their representation.
CO2	Explain the stability & Causality of LTI system.
CO3	Analyze various type of discrete time signal and system using z-transform.
CO4	Analyze discrete signal & System using DFT technique.
CO5	Realize different structure of FIR & IIR discrete time systems.
CO6	Design FIR & IIR filter using various technique.

Type	Code	Engineering Economics and	L-T-P	Credits	Marks
HS	BTBS-T-HS-404	Costing	3-0-1	3	150

Objectives	 Account for the time value of money in economic analyses. Make economic decisions using present worth, annual worth, future worth, and capitalized cost. 	
Pre-Requisites	Economic decisions involving engineering alternatives; annual cost, present worth, rate of return, and benefit-to-cost; before and after tax replacement economy; organizational financing; break-even charts; unit and minimum-cost public sector studies. Open only to junior and senior engineering students.	
Teaching Pedagogy	Formal face-to-face lectures Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material. Small periodic quizzes, to enable you to assess your understanding of the concepts.	

Module-#	Topics	Hours	
Module-1	Engineering Economics- Nature, Scope, Basic problems of an economy, Micro Economics and Macro Economics. Demand - Meaning of demand, Demand function, Law of Demand and its exceptions, Determinants of demand, Elasticity of demand & Demand amp; its measurement (Simple numerical problems to be solved), Demand Forecasting - Meaning SupplyMeaning of supply, Law of supply and its exception, Determinants of supply, Elasticity of supply, Determination of market equilibrium (Simple numerical problems to be solved).	10 Hours	
Module-2	Production - Production function, Laws of returns: Law of variable proportion, Law of returns to scale Cost and Revenue Concepts - Total Costs, Fixed cost, Variable cost, Total revenue, Average revenue and Marginal revenue, Cost-Output Relationships in the Short Run, and Cost-Output Relationships in the Long Run, Analysis of cost minimization.	08 Hours	
Module-3	Market - Basic understanding of different market structures, Determination of equilibrium price under perfect competition (Simple numerical problems to be solved), Break Even Analysis-linear approach (Simple numerical problems to be solved).		
Module-4	Time Value of Money- Interest - Simple and compound, nominal and effective rate of interest, Cash flow diagrams, Principles of economic equivalence. Evaluation of Engineering Projects- Present worth method, Future worth method, Annual worth method, Internal rate of return method, Cost benefit analysis for public projects.	06 Hours	
Module-5	Depreciation - Depreciation of capital assert, Causes of depreciation, Methods of calculating depreciation - Straight line method, Declining balance method, SOYD method, After tax comparison of project.	04 Hours	
Module-6	Inflation-Meaning of inflation, types, causes, measures to control inflation. National Income-Definition, Concepts of national income, Method of measuring national income. Banking - Commercial bank, Functions of commercial bank, Central bank, Functions of Central Bank.	05 Hours	
	Total	40 Hours	

Te	xt Books:
1	Principles of Economics, Deviga Vengedasalam and Karaunagaran Madhavan, Oxford, ISBN-13
	8120341678
2	Riggs, Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India, ISBN-13: 978-8120341678.
Re	ference Books:
1	C. S. Park, Contemporary Engineering Economics, 6th Edition, Pearson Education, 2015, ISBN-13 8120342095
2	Engineering Economy , William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson, ISBN-13 8120341678
3	"Engineering Economics", R.Paneer Seelvan, PHI, ISBN-13 8120341678
4	"Principles of Micro Economics", Ahuja, H.L., S.Chand & Company Ltd, ISBN-13. 978-8120341678.
5	"Macro Economic Theory" Jhingan, M.L, Macro Economic Theory.

CO1	Remembering: Define the basic concept of micro and macroeconomics, engineering economics and their application in engineering economy.
CO2	Understanding: Evaluate numerically the effects of changes in demand and supply on price determination of products and services.
CO3	Analyze: the macroeconomic environment and financial systems of the country and its impact on business, society and enterprise.
CO4	Develop: the ability to account for time value of money using engineering economy factors and formulas.
CO5	Apply: knowledge of mathematics, economics and engineering principles to solve engineering problems and to analyze decision alternatives in engineering projects considering upon depreciation, taxes and inflation.
CO6	Understanding: Inflation and Banking.

Type	Code	PROGRAMMING	L-T-P	Credits	Marks
PC	BTCS-T-PC-405	WITH	3-0-1	3	150
		PYTHON			

Objectives	 Python is next generation multi-purpose programming language, that allows different users to create applications of various domains. Students will be able to learn primary fundamentals of python programming and potential of python is to achieve modern computing requirements.
Pre-Requisites	Object oriented concepts, Programming fundamentals
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with different examples

Module-#	Topics	Hours
Module-1	Introduction: History of Python, Need of Python Programming, Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation. Types, Operators and Expressions: Types - Integers, Strings, Booleans; Operators-Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership	
Module-2	Operators, Identity Operators, Expressions and order of evaluations ControlFlow- if, if-elif-else, for, while, break, continue, pass. Data structure: Lists - Operations, Slicing, Tuples, Sets, Dictionaries, Sequences. Comprehensions.	05 Hours
Module-3	Module-3 Functions - Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.	
Module-4	Object Oriented Programming OOP in Python: Classes and objects, constructor, 'self-variable', Methods, Constructor Method, Inheritance and types of inheritance, Polymorphism, overloading and Overriding Methods, Data encapsulation, static variables	08 Hours
Module-5	Python File Handling: Open files, read from a file and write to a file. Exception handling: Errors and exceptions in Python, Try Except, Built-in exceptions, user defined exceptions	06 Hours
Module-6	Brief Tour of the Standard Library - Dates and Times, Matplotlib, Numpy, Pandas. Modules: Creating modules, importing modules	08 Hours
	Total	40 Hours

Tex	Text Book				
1	Python Programming: A Modern Approach, Vamsi Kurama, Pearson, ISBN-13. 978-1284175554.				
Ref	erence Books				
1	Core Python Programming, W.Chun, Pearson, ISBN-13. 978-9386052308.				
2	Introduction to Python, Kenneth A. Lambert, Cengage, ISBN-13. 978-0132269933.				
3	John V Guttag, —Introduction to Computation and Programming Using Python ", Revised and expanded Edition, MIT Press, 2013, ISBN 13: 9780262525008.				
4	Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning, 2012, ISBN-13: 978-8131529034.				
5	Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-solving Focus, Wiley India Edition, 2013, ISBN-13 8126556014				
6	Learning Python, Mark Lutz, Orielly, ISBN-13. 978-1449355739.				

CO1	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow
	statements.
CO2	Express proficiency in the handling of strings and functions
CO3	Determine the methods to create and manipulate Python programs by utilizing the data structures like lists, dictionaries, tuples and sets.
CO4	Develop micro code for typical instructions in symbolic form.
CO5	Identify the commonly used operations involving file systems
CO6	Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and polymorphism as used in Python.

Type	Code	NPTEL	L-T-P	Credit s	Mark s
OO	BTCS-T-OO-406		1-0-0	2	-

Objectives	The objective is to facilitate the competitiveness of Indian industry in the global markets through improving the quality of engineering education by providing high quality learning material available to students by the Indian Institutes of Technology (IIT) and Technical Teacher Training Institutes (TTTI).	
Pre-Requisites	Knowledge of basic skill in every subject	
Teaching	Regular classroom lectures provided by different course providers online or virtual	
Pedagogy mode.		

List of Courses provided:

To be notified by the head of the department before the commencement of Fourth semester.

Туре	Code	ABILITY ENHANCEMENT	L-T-P	Credits	Marks
SC	BTSC-T-SC-407	TRAINING - C	1-0-0	1	100

Objectives	Defining the concepts of Indian tradition Knowledge		
	2. Understanding the importance of roots of knowledge system		
	3. Implementing the traditional knowledge to the day to day life		
	4. Distinguishing the types of traditional knowledge		
	5. Evaluating the ideas and teaching s of TK		
Pre-Requisites	To help students practiced and understand the various company pattern tests.		
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are		
Pedagogy	planned to be interactive with focus on real-life problem -solving activities.		

Module- #	Topics	Hours
Module-1	Introduction to Traditional Knowledge (Definition TK its Nature, characteristics and scope)	4 hrs
Module-2	Protection and significance of Traditional knowledge (Significance of TK Protection, Value of TK, role of Govt.to harness TK)	3 hrs
Module-3	Legal Frame work and TK (Forest Dwellers Forest right act 2001, 2002, 2006.)	3 hrs
Module-4	Traditional knowledge and Intellectual property (Systems & Legal concepts for the protection of traditional knowledge)	4 hrs
Module-5	Traditional knowledge and Engineering (Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge)	3 hrs
Module-6	Importance of conservation and sustainable development of Management of Biodiversity (Traditional societies dependence on environment, Food security of the country and protection of TK)	3 hrs
	Total	20 Hours

Tex	Text Book		
1	Quantitative aptitude ,R S Aggarwal , ISBN-13: 978-0199488780		
2	2 Quantitative Aptitude for CAT, Arun Sharma, ISBN-13. 978-9355321626.		
Reference Books			
1	Fast Track Objective Arithmetic , Arihant Publications , ISBN-13: 9789312149836		

CO1	Identify the concept of Traditional knowledge and its importance.
CO2	2. Explain the need and importance of protecting traditional knowledge.
CO3	3. Illustrate the various enactments related to the protection of traditional knowledge.
CO4	4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
CO5	5. Explain the importance of Traditional knowledge in Agriculture and Medicine.
CO6	Identify Characteristics of Memory System.

Type	Code	Design and Analysis of Algorithms	L-T-P	Credits	Marks
PC	BTCS-P-PC-401	Lab	3-0-1	3	100

Objectives	Analyze the asymptotic performance of algorithms.	
	Write rigorous correctness proofs for algorithms.	
1	Demonstrate a familiarity with major algorithms and data structures.	
Pre-Requisites	Knowledge of Mathematics in Secondary Education, Data Structure and Exposer to any programming Language.	
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.	

Lab No:	Name of the experiments	Hours
1	Implementation of different searching algorithms.	2 Hours
2	Implementation of different sorting algorithms.	2 Hours
3	Problem solving using Divide and Conquer technique.	2 Hours
4	Problem solving using Dynamic Programming technique.	2 Hours
5	Problem solving using Greedy technique.	2 Hours
6	Implementation of Graph Traversal algorithms – Breadth-First-Search (BFS) and Depth-First-Search (DFS).	2 Hours
7	Implementation of Minimum Spanning Tree construction algorithms – Kruskal and Prim.	2 Hours
8	Problem solving for the Shortest Path problems.	2 Hours
9	Problem solving using Backtracking technique.	2 Hours
10	Problem solving using Branch and Bound technique.	2 Hours
11	Implementation of different String-Matching algorithms.	2 Hours
12	Problem solving using disjoint-set data structure operations.	2 Hours
13	Problem solving using Approximation algorithms.	2 Hours

Text Books:

Design and Analysis of Algorithms Lab Manual, Department of CSE, GIFT, Bhubaneswar, ISBN-13. 978-1983074165.

CO1	Analyse and compare running times of algorithms using asymptotic analysis.
CO2	To demonstrate understanding of algorithmic design paradigms such as divide-and-conquer, dynamic-programming, greedy, backtracking etc.
CO3	Apply the algorithms design techniques to solve greedy problem.
CO4	Ability to analyse and implement shortest path problem.
CO5	Demonstrate the efficiency of algorithms using polynomial problem.
CO6	Implement minimum spanning tree and analyse time complexity.

Type	Code	Computer Organization and	L-T-P	Credits	Marks
PC	BTCS-P-PC-402	Architecture Lab	0-0-3	1	100

Objectives	Discuss the basic concepts and structure of computers. Understand concepts of register transfer logic and arithmetic operations. Explain different types of addressing modes and memory organization.
Pre-Requisites	Knowledge of fundamentals of Computer and C programming Language.
Teaching Pedagoy	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real-life problem-solving activities.

Lab No:	Name of the experiments	Hours
1	Identification of different components of a PC.	2 Hours
2	Assembling and Disassembling of a PC.	2 Hours
3	Study of Motherboard and its Installation.	2 Hours
4	Study of the functions of SMPS trainer kit.	2 Hours
5	Study of different types of printer trainer kit.	2 Hours
6	Study of Assembly language programs.	2 Hours
7	Study of different troubleshooting of CPU using CPU trainer kit.	2 Hours
8	Familiarization of different types of bytes addressing instruction using 8085/8086 simulators.	2 Hours
9	Write a C/C++ program to perform signed bit multiplication using Booth's Algorithm.	2 Hours
10	Write a C/C++ program for IEEE-754 floating point representation and perform Addition/Subtraction.	2 Hours

Text Books:

Computer Organization and Architecture Lab Manual, Department of CSE, GIFT, Bhubaneswar, ISBN-13: 978-8120332003

CO1	Identifying the various components of PC.
CO2	Discuss about the different troubleshooting of a dot matrix printer using LX 1050+Printer Trainer Module.
CO3	Demonstrate the functions of SMPS using SMPS Trainer Kit.
CO4	Illustrate different troubleshooting of CPU using CPU Trainer Module.
CO5	Compare the assembly language program of 8085 and 8086architecture.
CO6	To have the knowledge about Logic gate

Type	Code	PYTHON Lab	L-T-P	Credits	Marks
PC	BTCS-P-PC-405		0-0-3	1	100

Objectives	 To convert an algorithm into a Python program. To construct Python programs with control structures. To structure a Python Program as a set of functions.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with different examples

Lab No:	Name of the experiments	Hours
1	Python control statement	2 Hours
2	Program on data type using Python.	2 Hours
3	Program on matrix operation using Python	2 Hours
4	Program on Function using Python.	2 Hours
5	Program on String operation in python.	2 Hours
6	Program on object-oriented concept using python.	2 Hours
7	File handling in Python.	2 Hours
8	Program related to uses of Python modules (NumPy, Pandas)	2 Hours
9	Python programming using Matplotlib	2 Hours
10	Python programming for linear regression	2 Hours

Text Books:

PYTHON Lab Manual, Department of CSE, GIFT, Bhubaneswar, ISBN-13: 978-1491957660

Course Outcomes:

CO1	Understand the basic concept of Script language.		
CO2	Demonstrating the control statement in python		
CO3	Experiment on different datatypes in python.		
CO4	Ability to explore python especially the object-oriented concepts, and the built in objects of		
CO5	5 Implementation of Python Modules.		
CO6	Ability to Create practical and contemporary applications on Machine learning.		

Type	Code	Project-III	L-T-P	Credit s	Mark s
PS	BTCS-P-PS-408		3-0-1	2	150

Objectives	The objective is to analyze the designing process of combinational and sequential circuits, express arithmetic logic and shift micro-operations, identify the addressing modes used in macro instructions, apply algorithms for arithmetic operations and implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with different examples.

Projects using C Programing

- 1) Unit Converter
- 2) Customer Billing System in a shopping mall
- 3) Banking Management System
- 4) University Grading System
- 5) Bus Ticket Reservation System
- 6) Home Automation System
- 7) Digital Wall Clock
- 8) Book Support Automation
- 9) Lab Management System
- 10) Nursery Management System

Arduino based Project

- 1) Obstacle detection using Arduino
- 2) Controlling 4 LEDs to make different patterns
- 3) Voice Activation System
- 4) Use Humidity Sensor using Arduino
- 5) Arduino Based Color Detector
- 6) Touch Dimmer Switch Circuit Using Arduino
- 7) Wireless Door Bell
- 8) Arduino Traffic Light Controller
- 9) Frequency Counter Using Arduino
- 10) Arduino 4-Digit 7-Segment LED Display
- 11) Arduino based Digital Thermometer
- 12) Arduino Light Sensor
- 13) Portable Ultrasonic Range Meter
- 14) Security Alarm System Using Arduino
- 15) Arduino Alarm Clock
- 16) Interfacing LCD with Arduino

CO1	Identify Basic Organization of Computers.	
CO2	Identify the addressing modes used in macro instructions.	
CO3	Apply algorithms for arithmetic operations and implementation for ALU design.	
CO4	Develop micro code for typical instructions in symbolic form.	
CO5	Develop the pipeline and its performance.	
CO6	Identify Characteristics of Memory System.	