Syllabus for B. Tech 1st, 2nd and 3rd Year 2022 Admission Batch

Computer Science Engineering Artificial Intelligence

(Approved by Academic Council and Board of Studies)

GIFT Autonomous, Bhubaneswar

(Approved by AICTE, New Delhi, Affiliated to BPUT, Rourkela)
Recognized under section 2(f) of the UGC act, 1956
At. Gramadiha, Po. Gangapada, Via. Janla, Dist- Khorda, Pincode: 752054

1st Year Course Structure

		F	irst Semester						Second Semester		
	Theory Category Course Code					 		1	Theory		
SI. No.	cutcgory	Course Code	Course Title	WCH L-T-P	Credit	SI. No.	Catego ry	Course Code	Course Title	WCH L-T-P	Credit
1	BS	BTBS-T-BS-101	Introduction to Mathematics I	4-1-0	3	1	BS	BTBS-T-BS-201	Introduction to Mathematics II	4-1-0	3
2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2	2	BS	BTBS-T-BS-102/ BTBS-T-BS-103	Elements of Engineering Physics / Applied Chemistry	4-0-0	2
3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical and Electronics Engg./ Basic Mechanical and Civil Engineering	4-2-0	3	3	ES	BTBS-T-ES-101/ BTBS-T-ES-102	Basic Electrical and Electronics Engg./ Basic Mechanical and Civil Engineering	4-2-0	3
4	ES	BTBS-T-ES-103	Basic Programming Skills	4-1-0	3	4	ES	BTBS-T-ES-203	Programming Using Data Structure	4-1-0	3
5	HS	BTBS-T-HS-101	Communicative English -I	1-0-0	1	5	HS	BTBS-T-HS-201	Communicative English -II	1-0-0	1
6	SC	BTBS-T-SC-101	SEPD-1 (Skill Enhancement and Personality Development)	2-0-0	1	6	SC	BTBS-T-SC-201	BTBS-T-SC-201 SEPD-2 (Skill Enhancement and Personality Development)		1
7	MC	BTBS-T-MC-101/ BTBS-T-MC-102	IT & IS /Constitution of India	2-0-0	0	7	МС			2-0-0	0
		1	Total Hours/ Credit (Theory)	25	13	12 25 Total Hours/ Credit (Theory)			13		
			Practical						, , , , , , , , , , , , , , , , , , , ,		
1	BS	BTBS-P-BS-102/ BTBS-P-BS-103	Elements of Engineering	0-0-2	1				Practical		
	Po.		Physics Lab/ Applied Chemistry Lab	0.00		1	BS	BTBS-P-BS-102/ BTBS-P-BS-103	Elements of Engineering Physics Lab/ Applied	0-0-2	1
2	ES	BTBS-P-ES-101/ BTBS-P-ES-102	Basic Electrical and Electronics Engg. Lab/ Basic Mechanical and Civil Engineering Lab	0-0-2	1	2	ES	BTBS-P-ES-101/ BTBS-P-ES-102	Chemistry Lab Basic Electrical and Electronics Engg. Lab/ Basic	0-0-2	1
3	ES	BTBS-P-ES-103	Basic Programming Skill	0-0-4	2	2			Mechanical and Civil Engineering Lab		
			Lab			3	ES	BTBS-P-ES-203	Programming Using Data Structure Lab	0-0-4	2
4	ES	BTBS-P-ES-104/ BTBS-P-ES-105	Engineering Graphics with AutoCAD / Workshop Practice-I	0-0-3	1.5	4	ES	BTBS-P-ES-104/	Engineering Graphics	0-0-3	1.5
5	HS	BTBS-P-HS-101	Communicative English Lab-I	0-0-3	1.5	•		BTBS-P-ES-105	with AutoCAD / Workshop Practice-I		1.5
						5	HS	BTBS-P-HS-201	Communicative English Lab-II	0-0-3	1.5
			Total Hours/Credit (Practical)	14	7				240 11		
		Grand T	otal Hours/ Credit (Practical)	39	Total Hours/ Credit (Practical) 14				7		
								Gran	nd Total Hours/Credit (Practical)	39	20
								SUMMER INT	ERNSHIP TRAINING for 30 Days		

[✓] Approved by Academic Council in the 1st ACM dated 07.01.2023

CURRICULUM STRUCTURE

BTECH – CSE - AI, SYLLABUS- Batch--2022-23, SECOND YEAR

THIRD SEMESTER								
Sl. No.	L							
1	BS	BTBS-T-BS-303	Mathematics for Computer Science	3-0-0	3			
2	PC	BTCS-T-PC-301	Database Management System	3-0-0	3			
3	OE	BTEC-T-OE-301	Digital Logic Design	3-0-0	3			
4	HS	BTBS-T-HS-301	Organizational Behavior	3-0-0	3			
5	ES	BTCS-T-ES-301	Object Oriented Programming JAVA	1-0-0	3			
6	AE	BTSC-T-AE-301	Employment Enhancement Training -B	1-0-0	1			
7	MC	BTMC-T-MC- 302	Environmental Engineering	1-0-0	0			
Tota	l Credit (The	eory)			16			
Prac	tical		Database					
1	PC	BTCS-P-PC-301	Management System Lab	0-0-3	1			
2	OE	BTEC-P-OE-301	Digital Logic Design Lab	0-0-3	1			
3	EC	BTCS-P-ES-301	Object Oriented Programming Lab	0-0-3	1			
4	PS	BTCS-P-PS-301	SEMINAR-1	0-0-2	1			
5	SC	BTSC-P-SC-301	Evaluation of Summer Internship	0-0-2	2			
Tota	l Credit (Pra	ctical)	•		6			
Tota	l Semester C	redit			22			

	FOURTH SEMESTER								
Sl. No.	Category Course Code Course Title L.T.P				Credit				
1	PC	BTCS-T-PC-401	Design and Analysis of Algorithms	3-0-0	3				
2	PC	BTCS-T-PC-402	Computer Organization & Architecture	3-0-0	3				
3	PC	BTCS-T-PC-403	Programming With Python	3-0-0	3				
4	HS BTBS-T-HS-401 Engineering Economics and Costing		2-0-0	3					
5	OE	BTEC-T-OE- 401	Digital Signal Processing	3-0-0	3				
6	00	BTCS-T-OO-401	NPTEL Course	1-0-0	2				
7	AE	BTSC-T- AE- 401	Employment Enhancement Training -C	1-0-0	1				
8	МС	BTMC-T-MC- 302	Essence of Indian knowledge and tradition	1-0-0	0				
Tota	l Credit (Th	eory)			18				
Prac	ctical								
1	PC	BTCS-P-PC-401	Design and Analysis of Algorithms Lab	0-0-3	1				
2	PC	BTCS-P-PC-402	Computer Organization & Architecture Lab	0-0-3	1				
3	PC	BTCS-P-PC-403	Programming With Python Lab	0-0-3	1				
4	4 PS BTCS-P-PS-401 Project-III 0-0-2								
Tota	Total Credit (Practical)								
Tota	l Semester (Credit			23				

CURRICULUM STRUCTURE

BTECH CSE – AI SYLLABUS- (Batch--2022-23 THIRD YEAR

FIFTH SEMESTER								
Sl. No.	Catego ry	Course Code	Course Title	L-T-P	Credi t			
1	PC	BTCA-T-PC- 501	Artificial Intelligence	3-0-0	3			
2	PC	BTCA-T-PC- 502	Software Engineering	3-0-0	3			
3	PC	BTCA-T-PC- 503	Operating Systems	3-0-0	3			
4	PC	BTCA-T-PC- 504	Formal Language and Automata Theory	3-0-0	3			
5	PE	BTCA-T-PE- 501	Digital image Processing	3-0-0	3			
6	AE	BTCA-T- AE-501	Employment Enhancement Training - D	2-0-0	1			
7	МС	BTCA-T- MC-501	Essence of Indian knowledge and Tradition - II	2-0-0	0			
Tota	l Credit (Th	eory)			16			
Prac	tical							
1	PC	BTCA-P-PC- 501	Artificial Intelligence Lab	0-0-2	1			
2	PC	BTCA-P-PC- 502	Software Engineering Lab	0-0-2	1			
3	PC	BTCA-P-PC- 503	Operating Systems Lab	0-0-2	1			
4	PS	BTCA-P-PS- 501	Seminar - II	0-0-2	1			
5	PS	BTCA-P-PS- 502	Evaluation of Summer Internship -II	0-0-2	2			
Total Credit (Practical)								
Tota	l Semester (Credit			22			

		SIXTH	SEMESTER			
Sl. No.	Catego ry	Course Code	Course Title	L-T-P	Credi t	
1	BS	BTCA-P-BS-601	Optimization Engineering	3-1-0	4	
2	PC	BTCA-T-PC-601	Computer Network	3-0-0	3	
3	PC	BTCA-T-PC-602	Compiler Design	3-0-0	3	
4	PC	BTCA-T-PC-603	Neural Network and Machine Intelligence	3-0-0	3	
5	OE	BTCA-T-OE-601	Green Technology	3-0-0	3	
6	00	BTCA-T-OO-601	NPTEL Course	0-1-0	3	
7	SC	BTCA-T-SC-601	Employment Enhancement Training - E	2-0-0	1	
8	MC	BTCA-T-MC-601	Universal Human Values	2-0-0	0	
Total	Credit (T	heory)			20	
Practi	cal					
1	PC	BTCA-P-PC-601	Computer Network Lab	0-0-2	1	
2	PC	BTCA-P-PC-602	Compiler Design Lab	0-0-2	1	
3	PC	BTCA-P-PC-603	Neural Network and Machine Intelligence Lab	0-0-2	1	
4	PS	BTCA-P-PS-601	Project - IV	0-0-4	2	
Total Credit (Practical)						
Total	Semester	Credit			25	

Program Outcomes (UG Engineering)

Graduates Attributes (GAs) form a set of individually assessable outcomes that are the components indicative of the graduate's potential to acquire co mpetence to practice at the appropriate level. The Program Outcomes (POs) for UG Engineering programs defined by NBA are:

- PO1. **Engineering Knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2. **Problem Analysis**: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, n a t u r a l sciences, and engineering s c i e n c e s.
- PO3. **Design/Development of Solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5. **Modern Tool Usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6. **The Engineer and Society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legaland culturalissues and the consequent responsibility relevant to the professional engineering practice.
- PO7. **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9. **Individual and Team Work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11. **Project Management and Finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12. **Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Course Types & Definitions

LTTutorial

P Laboratory / Practical / Sessional

WCH Weekly Contact Hours

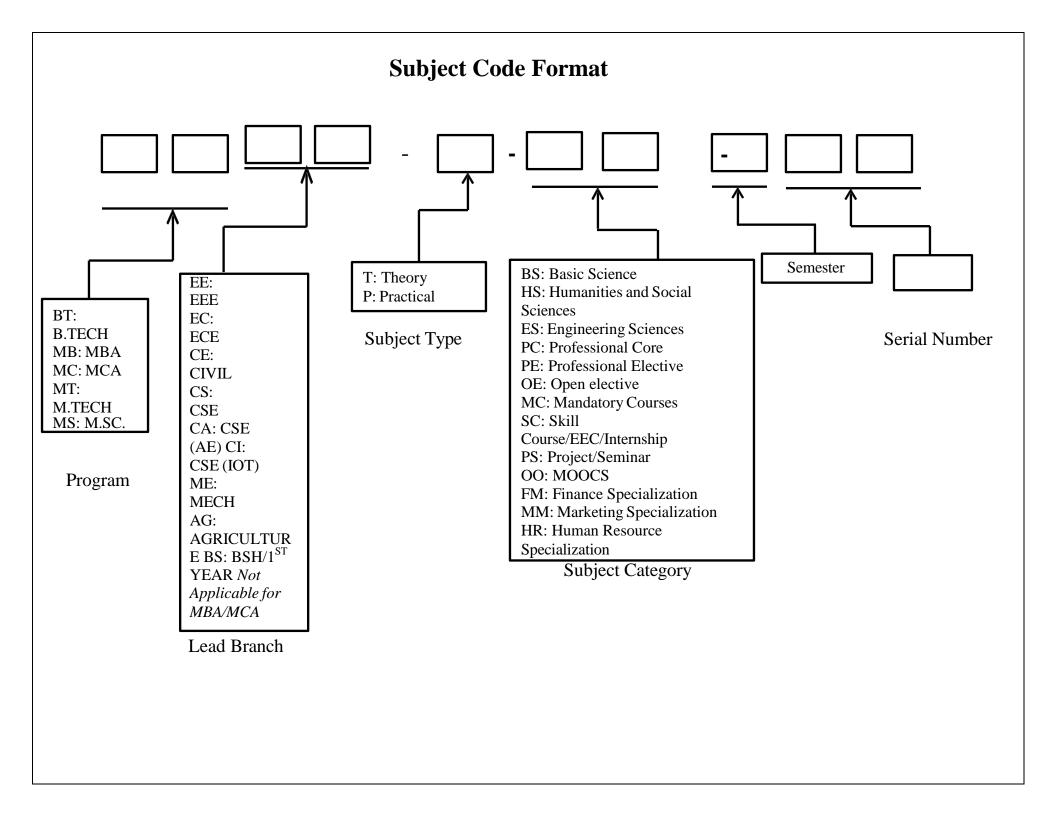
BS Basic Sciences

HS Humanities & Social Sciences (including Management)

ES Engineering Sciences

PC Professional Core

PE Professional Elective


OE Open Elective

MC Mandatory Course

SC Skill Course

EEC Employment Enhancement Course

SEPD Skill Enhancement and Personality Development

Evaluation process

1. Evaluation Process of Theory Subjects:

Internal Examination (B. Tech, Autonomous)								
Sr No	Type of Test	Mark	Frequency	Total Mark	Reduced Mark			
1	Modular Test	25	3	75	50			
2	Online Quiz Test	10	6	60	10			
3	Assignment	10	2	20	10			
4	Subject Specific Project	15	1	15	15			
5	Attendance	15	1	15	15			
TOTAL	100							
Pass M	45							

Proposed External Examination (B. Tech, Autonomous)							
Sr No	Type of Test	Mark	Frequency	Total Mark			
1	End Semester Examination	100	1	100			
Pass Ma	ark		1	35			

2. Evaluation Process of Practical Subjects:

Components	Marks	Frequency	Assigned To
Attendance	10	Closing of Instruction	To be retrieved from CMS
Daily Performance & Viva-voce	40	1	Concerned Faculty (Upload in CMS in weekly basis)
Lab Record	20	On the day of Experiment	Concerned Faculty
End-Semester Lab Test	30		At the end of the semester as per the schedule published by Examination Cell
Total	100		

3. Process of Skill Courses:

Evaluation

Components	Marks	Frequency	Assigned To
End-Semester Examination	100	1	Examination Cell/ Concerned Faculty
Total	100		

4. Evaluation Process of Mandatory Courses:

Components	Marks	Frequency	Assigned To
In-Semester Evaluation	100	1	Examination Cell/ Concerned Faculty
Total	100		

Contents

First Year B.Tech

Curriculum Structure

B.Tech (1st Semester & II nd Semester)

Item	Page No
Curriculum Structure	2
Evaluation Process	8
Details Syllabus	
Theory	
Introduction to Mathematics I	9-10
Elements of Engineering Physics	11-13
Applied Chemistry	14-16
Basic Electrical and Electronics Engineering	17-19
Basic Mechanical and Civil Engineering	20-22
Basic Programming Skills	23-24
Communicative English-I	25-26
SEPD-I (Skill Enhancement and Personality Development)	27-28
IT & IS /Constitution of India	29-31
Constitution of India	32-33
Introduction of Mathematics-II	34-35
Programming Using Data Structure	36-37
Communicative English-II	38-39
SEPD-II (Skill Enhancement and Personality Development)	40-41
Practical	
Elements of Engineering Physics Lab	42-43
Applied Chemistry Lab	44-45
Basic Electrical and Electronics Engineering Lab	46-47
Basic Mechanical and Civil Engineering Lab	48-49
Basic Programming Skills lab	50-51
Communicative English Lab-I	52
Engineering Graphics with AutoCAD	53-54
Workshop Practice-I	55-56
Programming Using Data Structure Lab	57-59
Communicative English Lab-II	60

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-101	Introduction to Mathematics - I	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and concepts of ordinary differential equations and applications, solution of system of linear equations using matrix, Eigen vectors & Eigen values of matrices with applications.	
Pre-Requisites	A good knowledge of trigonometry along with basics of differential and integral calculus of one variable and coordinate geometry of two and three dimensions.	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Speed Math	Average, Problems on Ages, Percentage, Profit and Loss, Ratio and Proportion, Time	
	Solution of first order differential equations, Linear equation, Bernoulli's equation. Second order differential equations with constant coefficients, Euler-Cauchy equation. Non-homogeneous equations: Method of undetermined coefficients, Variation of	10 Hours
	Parameters, Applications to Electric Circuits.	
Module-2	Introduction to vector space, subspace, span, linearly independent and linearly dependent vectors, solution of system of linear equations, Gauss elimination, Determinant, Rank of a matrix, Inverse of a matrix by Gauss-Jordan Method.	
Module-3	Eigen value, Eigen vector, Symmetric, Skew-symmetric and Orthogonal matrices, Hermitian, Skew-Hermitian, and Unitary matrices, Similarity of matrices, Diagonalization, Quadratic Form.	
	Partial differentiation, Maxima and Minima for function of two variables. Vector Differential Calculus: Vector and Scalar functions and Fields, Derivatives, Curves, Tangents and Arc length, Gradient, Divergence, and Curl.	11 Hours
	Total	45 Hours

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.

- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. A. Sharma, Quantitative Aptitude, Mc Graw Hill Education Pvt. Ltd
- R5. R. S. Aggarwal, Quantitative Aptitude For Competitive Examinations, S. Chand publication.

Online Resources:

- 1. https://nptel.ac.in/courses/111106100
- 2. https://nptel.ac.in/courses/111105121
- 3. https://nptel.ac.in/courses/111104137
- 4. https://nptel.ac.in/courses/111107108
- 5. https://nptel.ac.in/courses/111106051
- 6. https://nptel.ac.in/courses/111105134

CO1	Know the basic concepts of quantitative aptitude to meet real life requirements.	
CO2	Find the general solution of first and second order ordinary differential equations and use the general solution to find the specific solution for given initial value problems.	
CO3	Solve and demonstrate various physical models through second order differential equations.	
CO4	Use the understanding of matrix algebra to solve systems of linear equations, harmonics problems, population models etc. arising in various engineering fields.	
CO5	Demonstrate knowledge and applications of Eigen value problems related to engineering disciplines.	
CO6	Understand the vector function and fields for design and construction of systems.	

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-102	Elements of Engineering Physics	4-0-0	2	150

Objectives	1. To expose students to the fundamental principles and laws of mechanics in			
	Physics to understand the types of motion.			
	2. To analyze the concepts of mechanics, oscillations, waves and optics to prepare			
	the students for advanced level courses.			
	3. To demonstrate the ability to identify and apply the appropriate analytic,			
	numerical, and mathematical reasoning, to situations of the physical world.			
	4. To adaptability to new developments in science and technology.			
Pre-Requisites	Class 12 th level Physics course			
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are			
	planned to be interactive with focus on problem solving activities.			

Module-#	Topics	Hours
	Oscillation, waves and Mechanical Properties	
Module-1	Simple, damped and forced oscillations, resonance, coupled oscillations.	12 Hours
	Wave and wave equation, Superposition of waves.	
	Interference, Young's double slit experiment, Newton's rings, Diffraction,	
	Fraunhofer diffraction by single slit, Diffraction Grating, Polarization, Malus'	
	Law, Brewster's Law.	
	Mechanical Properties of Matter Stress, strain, Hooke's law, elastic constants	
	and their relations, stress-strain diagrams	
Module-2	Electromagnetism and Concept of Quantum mechanics	
	Divergence, Curl and Gradient, Line, Surface and volume integral, Gauss	
	divergence theorem, Stokes theorem (Only Statements, no proof), Gauss's law,	10 Hours
	Ampere's law and Faraday's law of electromagnetic induction, Maxwell's	
	equations in integral and differential form.	
	Black body radiation, Planck's law, photo electric effect (concept and equation),	
	Matter waves, de Broglie hypothesis, Heisenberg's Uncertainty Principle and its	
	application, Schrodinger's wave equation - Time independent and Time	
	dependent equations, Free particle, Particle in a one dimensional rigid box.	

Module-3	Engineering Materials Semiconducting Material: Defects in solids (Elementary idea), Concept of energy bands in solids, carrier concentration and conductivity in semiconductors with temperature dependence, construction and working of PN junction diode. Dielectric materials, Dielectric Polarization, Dielectric Breakdown, Dielectric constant and loss, Electromagnetic wave in dielectric medium. Superconducting materials: Superconductivity, Critical parameters, Meissner effect, Type I & Type II superconductors, BCS theory, applications of super conducting materials. Nano material: Classifications, Quantum confinement, surface to volume ratio,	10 Hours
Module-4	Quantum Statistics and Optoelectronic devices Statistical Mechanics: Statistical distributions: Maxwell-Boltzmann, Molecular Energies in an ideal gas, Bose-Einstein and Fermi-Dirac statistics. Laser: Spontaneous and stimulated emission, Einstein's coefficients, Population inversion, Light amplification, Basic laser action, Types of laser, Ruby and He-Ne lasers, applications. Fiber Optics: Optical fiber and its principle, acceptance angle, numerical aperture for step and graded index fibers, attenuation mechanism in optical fibers, applications of optical fibers.	
Total		44 Hours

Text Books:

- T1. Principles of Engineering Physics-Vol. I and II by M. Khan & S. Panigrahi, Cambridge university Press
- T2. Engineering Physics: D. R Joshi, McGraw Hill Education Press
- T3. Engineering Physics: H. K Mallik, A. K Singh, McGraw Hill Education Press

Reference Books:

- R1. Electronic Devices and Circuits Millman, Halkias and Jit, Tata McGraw Hill
- R2. Concepts of Modern Physics: A Beiser, S Mahajan, S. Raichoudhury
- R3. Optics: A. K. Ghatak
- R4. Introduction to Solid State Physics: S. O. Pillai
- R5. Properties of matter: D. S. Mathur

Online Resources:

- 1. https://nptel.ac.in/courses/122106027
- 2. https://nptel.ac.in/courses/115105121
- 3. https://onlinecourses.nptel.ac.in/noc22_ph06/preview
- 4. https://nptel.ac.in/courses/115105097
- 5. https://nptel.ac.in/courses/108106161

CO1	Understand the concepts of waves, oscillation and its significance.
CO2	Acquire skills to apply formulas of optics and wave physics.
CO3	Gain Acquire Knowledge of basic concepts of electric and magnetic fields.
CO4	Develop the concept of different engineering material and their applications.
CO5	Understand the basic knowledge of thermodynamic and use them to solve practical problems.
CO6	Develop a comprehension of the current basis of broad knowledge in Modern physics.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-103	Applied Chemistry	4-1-0	2	150

Objectives	The objective of this course is to build knowledge of students about basic concepts and application of Chemistry from Industrial, Pharmaceutical, research, agriculture and life science point of view.
Pre-Requisites	A fundamental knowledge of Quantum, Inorganic chemistry, along with basics of Periodic table, properties of metal are to be clear.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Module-1	Quantum Mechanics and its application : Failure of classical mechanics and introduction to quantum mechanics, Photoelectric effect, Postulates of Quantum mechanics, Schrodinger's wave equation (Derivation not required), Particle in One dimensional box, Significance of eigen value and eigen function. Zero point energy.	7+5=12 Hours
	Phase rule and its application : Definition of phase, component and degree of freedom ,one component system, Water, Sulphur system, Curves and triple points, meta stable triple point, Two component alloy systems: Bi-Cd, eutectic	
Module-2	Electro Chemistry and its application: Electro chemical cells, Dry cell, Alkaline battery, Ni-Cd battery, Li-ion Battery, Pb-acid storage cell Fuel Cells: Definition, Different types of fuel cell, Hydrogen blue fuel cell, FCEVs	5+2+6=13
	Corrosion : Theory and mechanism of corrosion, Types, differential aeration corrosion, water line corrosion, Pitting, stress, SCC, galvanic corrosion, Caustic embrittlement, Factors affecting corrosion, Corrosion Control, corrosion inhibitors: Cathodic protection, Metal coatings	

Total		45 Hours
Module-4	Nano materials: Introduction, Classification, characteristics, 0D,1D, 2D Nanomaterials, Synthesis: Top Down & Bottom Up approach, Application to Pharmaceutical and Research.	8 Hours
	Polymer : Degree of polymerization, Thermosetting and thermoplastic polymer with examples: Polethene, PVC, Nylon-6, Teflon and their applications, Rubber: Natural rubber, Vulcanized rubber.	
Module-3	Fuel : Classification, calorific value, refining of crude oil, cracking, fuel for I/C engine, knocking, anti-knocking, Octane rating. Diesel engine fuels, Cetane rating, Combustion calculations. Gaseous fuel: LPG, CNG, Biogas fuel, Alternate Fuels, carbon foot print, carbon trading	8+4=12 Hours

Text Books:

- T1. Theory & Practical's of Engineering Chemistry, By Shashi Chawla, Publisher: Dhanpati Rai & CO.(Pvt.) Ltd
- T2. Engineering Chemistry Vol-I & II, Author: Jain & Jain, Publisher: Dhanpati Rai Publishing Company.
- T3. Engineering Chemistry, Author: Prasant Rath, 2015, Cenage Learning India Pvt, Ltd
- T4. Textbook on Engineering chemistry. Author: Achyutananda acharya & Biswit Samantaray, publisher: Pearson

Reference Books:

- R1. Theory & practical's of engineering chemistry, by Shashi Chawla, publisher: Dhanpati Rai & CO.(Pvt.) Ltd
- R2. Engineering chemistry vol-i & II, author: Jain & Jain, publisher: Dhanpati Rai publishing company.
- R3. A textbook of engineering chemistry, author: Dr. Rajshree Khare publisher: S.K. Kataria & sons.
- R4. Textbook of nanoscience and nanotechnology. Mcgraw Hill Education (India) Pvt. Ltd., 2012.
- R5. Nanostructures & Nanomaterials: synthesis, properties and applications- g. Cao and Y. Wang, world scientific

 Pvt.

Ltd.; 2nd edition

Online Resources:

- 1. https://www.energy.gov/eere/fuelcells/fuel-cells
- 2. https://www.britannica.com/science/polymer
- 3. https://www.niehs.nih.gov/health/topics/agents/sya-nano/index.cfm
- 4. https://afdc.energy.gov/vehicles/fuel_cell.html
- 5. https://www.researchgate.net/publication/258761372

CO1	Describe graphs of one and two component system (curves) and their characteristics.
CO2	Solve quantum energy related problem and determine the quantized energy of different energy levels.
CO3	Explain the methodology of corrosion occurrence in different cases and its prevention to optimum level.
CO4	Explore the concepts and methods of blending of fuels with better Cetane and Octane number.
CO5	Use the concept of Polymer Synthesis, new material synthesis methodologies and types of nanomaterial.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-101	Basic Electrical and Electronics Engineering	4-2-0	3	150

•	To expose to the field of electrical &electronics engineering, and to acquire the fundamental knowledge in the field.		
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education		
0 00	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.		

Module-#	Topics	Hours	
Module-1	Introduction to Electrical power system: An overview of Electrical Engineering, Sources of energy, steam, hydro and nuclear power generation, Renewable source of Power generating station and general structure of electrical Transmission, Distribution, Utilization & Conservations. DC Circuits: Study of Electrical Elements (R, L, C). Ohm's Law. Series & Parallel combination. KCL, KVL, Nodal & Mesh analysis. Star Delta Conversion. AC fundamentals: Sinusoidal Wave form, Peak, RMS, Average value. Concept of Real Power, Reactive Power, Apparent Power & Power factor. Analysis of 1- phases AC circuit. Introduction to 3- phase system. Line & Phase quantity in star and delta connection, Analysis of 3- phases balanced AC circuit.	9 Hours	
Module-2	Magnetic circuits: Electro magnetism, simple magnetic circuit, magnetic material, B-H curve. Electrical Machines: Construction, working principle & Application of DC generator, DC Motor, single phase & 3-phase transformer, 3 phase & single phase induction motor, Alternator & Special Motors (Stepper & BLDC) Electrical Installations & wiring: Layout of LT switchgear, Switch fuse unit (SFU), MCB, ELCB, MCCB, Type of earthing & Different types of Domestic Wiring. Electrical Safety: Safety Procedure for working on electrical mains & Apparatus, Electrical hazard, its preventions & Protections, Fire preventions & protection for electrical installations. First aid in electrical Injuries. Artificial respiration & chest compression for accidents victims. IE rules and Electrical License rules. Different Illumination, Batteries and their applications	13 Hours	
Module-3	Introduction to Electronics and Communication Engineering: Basic Electronics components (active, passive), Signal, Spectrum, Frequency Band and Industrial application (VLSI, Microwave, RF, Telecommunication, Fiber Optics, RADAR, Signal Processing). Basic Communication Block Diagram and concept of Transmitter, Receiver and Channel. Diodes: Overview of Semiconductors. Working principle and characteristics of PN junction. Diode applications (half-wave and full-wave rectifier, clipper,	13 Hours	

	Sensor	
Module-4	Number System, Boolean Algebra Digital logic Gates (AND, OR, NOT, NAND, NOR, EXOR, EX-NOR); Realization of Basic logic gates using universal gates, Half-Adder, Full-Adder, Half-Subtractor, Full-Subtractor, fundamentals flip-flops, registers and shift registers. Introduction to Microprocessors and Microcontrollers: Basic block diagram: input, output, ALU, CU, Registers, Difference between microprocessor and microcontroller. Introduction to Sensors and their Applications: Introduction to different types of Sensors: Temperature sensor, Moisture Sensor, Rain Sensor, LDR, IR, Smoke	9 Hours
	clamper and zener /Avalanche Breakdown). Bipolar Junction Transistor :Construction, Operation of Bipolar Junction Transistor and Transistor Biasing : Fixed Bias, Voltage divider bias, CB, CE, CC (Relationship between α, β, γ) circuit configuration Input-output characteristics, Transistor as a switch, as an Amplifier . Op-Amp: The Operational Amplifier (Op-Amp): The Ideal Op-Amp Characteristics, Virtual ground concept, Inverting and non-inverting configurations, Application of Op-Amp (Summing amplifier, Integrator, Differentiator. Unit Gain Amplifier), 555 Timer.	

Text Books:

- T1.D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill.
- T2. Principles of Electrical Safety, Peter E. Sutherland, Wiley-IEEE Press.
- T3.Electronic Devices and Circuit Theory (Ninth Edition), Robert L. Boylestad and Louis Nashelsky, Pearson Education, 482 FIE, Patparganj, Delhi 110 092.
- T4.Digital Design, 5th Edition M. Morris Mano and Michael D Ciletti Pearson

Reference Books:

- R1. "Basic Electrical Engineering" by Mittle, V and Arvind Mittle, Tata McGraw Hil.
- R2.E. Hughes, "Electrical and Electronics Technology", Pearson.
- R3.V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India.
- R4.Microelectronic Circuits, 7th Edition Adel S Sedra and Kenneth C Smith Oxford University Press
- R5.Fundamentals of Digital Circuits, 4th Edition A Anand Kumar PHI
- R6. Integrated Electronics, 2nd Edition Jacob Millman and Christos Halkias Tata McGraw Hills
- R7. A course in Electrical and Electronic Measurements and Instrumentation Author: AK Sawhney Publisher:

Dhanpat Rai & Co. (P) Limited

- R8. A Textbook of Electrical Technology, by Theraja B L and Theraja A K, S Chand.
- R9. Principles of Electrical Engineering and Electronics- V K Mehta, Rohit Mehta, S Chand.
- R10. "Basic Electrical Engineering" by C L Wadhwa, New Age pub.
- R11.D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill.
- R12.Electrical Safety Handbook, 4th Edition Hardcover by John Cadick Mary Capelli-Schellpfeffer Dennis Neitzel Al Winfield
- R13 B. Ram, Fundamentals of Microprocessors and Microcomputers, Dhanpat Rai Publications

Online Resources:

- 1. https://onlinecourses.nptel.ac.in/noc23_ee62
- 2. https://onlinecourses.nptel.ac.in/noc23_ee17
- 3. https://onlinecourses.nptel.ac.in/noc23_ee65
- 4. https://onlinecourses.nptel.ac.in/noc23_ee66
- 5. https://onlinecourses.nptel.ac.in/noc23_ee15
- 6. https://onlinecourses.nptel.ac.in/noc22_ee90
- 7. https://onlinecourses.nptel.ac.in/noc22_ee93

CO1	Introduce fundamentals idea & techniques about electrical engineering & to provide knowledge
	about DC, AC & Magnetic Circuits
	Impart conceptual analysis of electrical machineries & to familiarize the students with electrical
CO2	safety equipment & domestic wiring.
	Inculcate sound understanding of illumination scheme.
CO4	Acquire knowledge about basic electronic components, industrial applications and fundamentals
	of communication.
CO5	Understand basic operation and applications of Diode, BJT and Op-Amp.
CO6	Explain the basics of digital concepts, sensors, microprocessors and microcontrollers

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-102	Basic Mechanical and Civil Engineering	4-2-0	3	150

()hiectives	To expose to the field of civil and mechanical engineering, and to acquire the	
3	fundamental knowledge in the field.	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education	
TeachingPedagogy Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.		

Module-#	Topics	Hours
Module-I	Introduction to Mechanical Engineering and Materials: Introduction to mechanical engineering & Mechanical systems (Hydraulic Mechanical & Pneumatic), Robot anatomy, classification based on robot configuration; Polar, cylindrical, Cartesian Coordinate and spherical. Mechanical Sensors, Automation. Power transmission devices: Belt, Rope, Gear & Gear drives. Coupling, clutch brakes. (Working principle only), Mechanical Advantage, Velocity ratio. Module-I Engineering Materials: Classification of engineering material, Properties-Physical Chemical & Mechanical, Composition of Cast iron and Carbon steels, Alloy steel their applications., Composites, Plastics and ceramics. Concepts of Metallurgy. Smart materials. Mechanical Measurement: Concept of measurements, errors in measurement measurement of Temperature, Pressure, Velocity, and Flow.(working principle only.)	
Module-II	Fundamentals of Thermodynamics: Application of thermodynamics in daily life, Refrigerants, Steam formation& its properties. Evaporation and Condensation, Desalination, Dry ice Vs Liquid Nitrogen, Aircraft engines and its classifications, Fuels, Rockets. Application: Steam power plant, I.C Engine, Refrigerators and Air- Conditioners (Brief description of different components with Schematic diagram only.) BS-VI. Fluid Properties and their Applications: Fluid properties, Pascal's Law its application, Bernoulli's theorem. Hydraulic machines: turbines, pumps, their types. Cryogenics.	11 Hours

	Introduction to Construction materials and Field Survey: Basics of Civil	
	Engineering & Broad disciplines of Civil Engineering, Building components and	
	Materials – Brick, Stone, Cement, Concrete, Steel, Timber (composition, function	
	and uses).concept of smart building., New and smart Materials - flyash, new-age	
	concrete, recycling of materials. Infrastructure - habitat, megacities, current and	
Module-III	futuristic vision.	10 Hours
Module-III	Scale, plan, map, principles of survey, Linear measurements, Ranging, Compass	
	Survey, Bearing of a line, Introduction to Modern Survey Instruments (EDM and	
	Total Station), GIS and GPS (Introduction only).	
	Fundamentals of Soil Mechanics, Hydrology and Transportation: Fundamentals	
	of soil classification, properties, foundation (deep and shallow) and types.	
	Fundamentalsof Irrigation engineering- sources and hydrologic cycle. Introduction	
	to hydraulic structures like canals, siphons, weirs, dams etc.	
	Wastewater Treatment - Sea Water Intrusion - Recharge of Ground Water.	12 Hours
Module-IV	Different modes of transport, classification of road, Traffic sign and Road Marking,	
	Introduction to Railway, Airport, Bridges, concept of Tunnels and Metro	
	rail(underground and overhead). Basics of Port and Harbor - Concept of inland	
	waterways.	

TextBooks:

- T1. Basic Mechanical Engineering by Pravin Kumar, Pearson.
- T2. Text book of Elements of Mechanical Engineering, S T Murthy, Universities press.
- T3. Cengal, Y., Boles, "Thermodynamics", Mc-Graw Hill, 2001.
- T4. Nakra & Chaudhary, Instrumentation and Measurements, TMH.
- T5. Basic Civil Engineering, S.Gopi, Pearson.
- T6. Basic of Civil Engineering, M.S. Palanichamy, McGraw Hill.

Reference Books:

- R1. Basic Mechanical Engineering by BasantAgrawal, C M Agrawal, Willey .
- R2. Elements of Mechanical Engineering by J K Kittur and G D Gokak, Willey.
- R3. Engineering Thermodynamics by P. Chattopadhaya, Oxford University Press.
- R4. Basic Mechanical Engineering by .D. Mishra, P.K Parida, S.S.Sahoo, India Tech Publishing.
- R5. Engineering Materials, S C Rangwala, Charotar Publishing House.
- R6. Surveying Vol -1, RAgor, Khanna Publisher.
- R7. Water supply ana Waste water engineering, S.K. Garg.
- R8. Introduction to Bridge Engineering, D. Jhonson Victor.

R9. Engineering Materials, S C Rangwala, Charotar Publishing House.

CO-1	Understand the fundamental of robotics, its application & power transmission system.
CO-2	Learn about engineering materials application and some measuring devices.
CO-3	Impart knowledge on thermodynamics, its application & fluid mechanics.
CO-4	Acquire knowledge about importance of Civil Engineering Materials and the aspects of field
CO-5	Understand the soil mechanics and fundamentals of irrigation engineering
CO-6	Formulate an idea in planning and design aspects of transportation engineering

Type	Code		L-T-P	Credits	Marks
ES	BTBS-T-ES-103	Basic Programming Skills	4-1-0	3	150

Objectives	To expose to the field of Problem Solving and Programing		
Pre-Requisites Knowledge of Mathematics in Secondary Education			
0 00	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.		

Module-#	Topics		
Module-1	Algorithm, Representation of Algorithm: Flowchart/Pseudo-code with examples. From algorithms to programs; C Program source code, C Program structure, basic syntax, data types, variables, constants, storage class, syntax and logical errors in compilation, object and executable code, Arithmetic expressions, operators and precedence.	10 Hours	
Module-2	Decision making: Conditional Branching, if statement, if else statement, nested if else statement, switch, nested switch statements, Iteration and loops, break, continue, Decision making Application in solving real life problems.	8 Hours	
Module-3	Arrays: Arrays (1-D, 2-D), initialization, Accessing Array Elements, Matrix applications, Character arrays and Strings, Pointers, Pointer arithmetic, dynamic memory allocation, pointer to array and array of pointers Linear Search, Bubble Sort	8 Hours	
Module-4	Functions, Parameter passing in functions, call by value, idea of call by reference, recursion with examples of Finding Factorial, Fibonacci series, and passing arrays to functions, nested function, local and global variables, static variables.		
Module-5 Structures, Array of structures, union, structure vs union, passing structure to function, File handling: ASCII and binary Files.			
Total		40 Hours	

Text Books:

- 1. E. Balagurusamy, Programming in ANSI C, 8th Edition, Tata McGraw Hill, 2019
- 2. Herbert Schild, C: The Complete Reference, Tata McGraw Hill

Reference Books:

- 1. A.K.Rath and A. K. Jagadev, "Data Structures and Program Design using C", 2nd Edition, Scitech Publications, 2011
- 2. Horowitz and Sahani, "Fundamentals of Data Structures", Galgotia Publication Pvt. Ltd
- 3. Rajaraman, V., Computer Programming in C, PHI Publications
- 4. Somashekara, M. T., Guru, D. S., Manjunatha, K. S., Problem Solving With C, PHI
- 5. Yashavant Kanetkar, Let Us C, 17th Edition, BPB Publications New Delhi, 2019

CO1	Formulate simple algorithms for problem solving and translate the algorithms to programs.
CO2	Execute the programs and correct syntax and logical errors.
CO3	Implement different conditional branching and loops for problem solving.
CO4	Decompose a problem into functions and synthesize a complete program using divide and conquer approach.
CO5	Use arrays, pointers and structures to formulate algorithms and programs.
CO6	Apply programming to solve searching and sorting problems.

Type	Code		L-T-P	Credits	Marks
HS	BTBS-T-HS-101	Communicative English-I	2-0-0	1	150

Objectives	To develop the Listening skills to comprehend various forms of communication.
	To evaluate the speaking skills with communicative efficiency.
	To distinguish different types of reading comprehension for better understanding and an
	To implement the requisite skills for effective writing.
Pre-Requisites	To have basic knowledge on LSRW skills
Teaching Pedagogy	Regular classroom lectures with use of PPT when required, sessions are planned to be interactive with examples to be acquainted with different types of communication

Module-#	Topics	Hours		
Module-1	Relevance of Communication: Importance of communication in English Language for Technocrats Process and Factors of Communication Applied Grammar (Parts of Speech, Modals, Subject – Verb Agreement, Vocabulary and usage)			
Module-2	Reading and Writing Process of Reading, Skimming, Scanning, inferential Reading Process of Writing, Summarizing and Paraphrasing, Note Making, Notice Writing Minutes & Preparing Agenda	05 Hours		
Module-3	Oral Communication Sounds of English: Vowels and Consonants Sounds, Syllable and its Structure, Word Stress, Indian English and Standard English. Listening: Process and Types of Listening, Strategy of Listening	10 Hours		
	Total	25 Hours		

Text Books:

- T1. Effective Technical Communication- M Ashraf Rizvi- Tata Mc Graw Hill
- T2. Communication Skills- Sanjay Kumar & Puspalata- Oxford
- T3. Soft Skills- Dr. K. Alex- S. Chand

Reference Books:

- R1. An Introduction to Professional English and Soft Skills Das et al.- Foundation Books
- R2. Corporate Soft Skills-Sarvesh Gulati- Rupa Publications
- R3. Corporate Communication- Pragyan Rath, K. Shalini, Debankita Ray-Cengage
- R4. The Art of Communicating- Thich Nhat Hanh- Rhuk
- R5. Communication Skills- Anjana Tiwari- Khanna Publishing (1st Ed.)

Online Resources:

www.britishcouncil.in www.eltai.in

CO1	Develop the understanding of communication in different environment.
CO2	Evaluate the various Types of Communication
CO3	Analyze the rules for Pronunciation English Language effectively.
CO4	Understand the importance of Reading
CO5	Identify the different forms of Business Writing
CO6	Practice LSRW in the Professional Place

Type	Code	Skill Enhancement and Personality	L-T-P	Credits	Marks
SC	BTBS-T-SC-101	Development (SEPD)-I	2-0-0	1	100

Objectives	To significantly raise the employability of the students to a level where they are able to clear campus selection process and at the same time develop an attitude of constant self-improvement throughout their career.	
Pre-Requisites	Requisites Self-discipline	
Teaching Scheme Regular classroom lectures with use of ICT as and when required, sess planned to be interactive with focus on personality development		

Module-#	Topics	Hours
	Self – knowledge:	
Module-1	1. Exploring habits, attitudes, preferences and experience	
	2. becoming aware of strengths and weaknesses, talents and problems, emotions	
	and ideas	
	3. Identifying the optimum means of improving personal performance	
	4. Identifying areas of expertise and use these to solve problems in new contexts	
	5. Knowing your ambitions, goals, and values	
	6. Understanding feelings and emotions: primary feelings and secondary feelings,	
	Self-regulating emotions	
	Self-management	
Module-2	1. IQ, EQ, SQ, MI	10 Hours
	2. Understanding of life story	
	3. Focusing on Internal narratives	
	4. Managing change, confusion and uncertainty	
	5. Sharpening the Intellect	
	6. Schooling the mind	
	7. Socializing the individual	
	Total	20 Hours

Text Books:

T1.Personality Development by D.P.Sabharwal

T2. Personality Development by L.Kendo

Reference Books:

R1.Here,There & Everywhere by Sudha Murty

R2. Personality Development by Swami Vivekananda

CO1	Improve habits, attitudes, preferences and experience
CO2	Identify their own potentials and accept their own limitations
CO3	Overcome their limitations and move towards self esteem
CO4	Maximize self-potential in enabling a holistic development

Type	Code		L-T-P	Credits	Marks
MC	BTBS-T-MC-101	Information Technology and Information Systems (IT & IS)	0-0-2	0	100

Objectives	To expose to the fundamental usage of Computer.
Pre-Requisites	Basic knowledge of English in Secondary Education
Teaching Scheme	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life activities.

Module-#	Module-# Topics	
	Introduction Windows OS, OS Commands and operations, Introduction to MS Office	
	MS-Word: Create; open, save, print command of file. Home tab: Edit texts, Format text, Paragraph setting and apply styles.	
Module 1	MS-WORD: Insert tab: Cover page, blank page, page break, table, picture, clip art.	10 Hours
	MS-WORD: Insert tab: shape, chart, hyperlink, header and footer, textbox, word art, equation and symbols.	
	MS-WORD: Mailing tab: Mail merge, Page Layout tab: margin, orientation, size, columns, watermark, page color, page border, Review tab: spelling and grammar checking, Thesaurus.	
	MS-EXCEL: Create workbook, Home tab, Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art.	
	MS-EXCEL: Page Layout tab: Margin, Orientation, Paper size, print area, Background	
Module 2	MS-EXCEL: Formulas tab: Auto sum(sum, average, count numbers, max, min), Insert Function(if, sum if, count if, average if, max if, min if)	10 Hours
	MS-EXCEL: Data Tab: Sort and filter, Text to column, Remove Duplicate, Data Validation, Group.	
	MS-POWER POINT: Create file, Home tab, Insert new slide, change layout, Insert tab: Table, picture, Clip art, Shapes, Charts, Hyperlink, Textbox, Word Art, Header Footer, movie, sound.	
	MS-POWERPOINT: Design tab: Theme, color, font, background style. Animation Tab: Custom animation, Transition(style, sound, speed), Slide show.	
	MS-ACCESS: Overview, Home Tab: Views, Records, Sort & Create	

	Tab: Create new Table,	10 Hours
Module 3		
	MS-ACCESS: Table: Template, Table Design, Insert data. External Data Tab:	
	Import, Export	
	Create a resume using MS-Word. Create a table named Student Mark Entry to	
	enter rollno, name, mark of 6 subjects. Enter total and average mark.	
	Create a datasheet contains 100 student information using MS-Excel. Create a	
	column chart named Student Mark Graph that contains name, mark of 6	
	subjects for five students.	
	Total	20 Hours

Course Outcomes: At the end of this course, the students will be able to:

CO1	Remember basic understanding of computer and basic concepts of Editing and Publishing
CO2	Understand the concepts of Paragrapghs, tables, Margins Page Setting
CO3	Learn to concise and precise on implementing Tables and Graphs
CO4	Illustrate the usages of formulae and fundamental Calculations
CO5	Select the data structure for different applications
CO6	Develop projects using MS Office and MS Access

Indicative Projects

MS WORD

- 1. Preparing a CV
- 2. Application Writing
- 3. Mail merge
- 4. Cover Page and Certificate Design

MS Excel

- 1. Customer Bill generation
- 2. Grade sheet preparation
- 3. Student Performance Analysis
- 4. Attendance tracking project
- 5. Daily expense tracking
- 6. Weather Monitoring Report

Power Point

- 1. Poster Design
- 2. Banner Design

Page 30 of 60

- 3. Information Brochure Design
- 4. Presentation on GIFT Autonomous College

MS Access

- 1. Student Database
- 2. Inventory Management
- 3. Room Reservation System
- 4. E-Commerce Database

Type	Code		L-T-P	Credits	Marks
MC	BTBS-T-MC-102	Constitution of India	2-0-0	0	100

Objectives	The objective of this subject is to provide understanding of the basic concept Indian Constitution and various organs created by the constitution including functions. The course acquaints students with the constitutional design of		
	structures and institutions, and their actual working overtime.		
Pre-Requisites	Basic knowledge of Indian history, overall idea on India's political system.		
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required and each session is planned to be interactive.		

Evaluation Scheme

Module-#	Topics	Hours
Module-1	Introduction to Indian Constitution, Historical perspective of the constitution of India. Preamble of Indian constitution, Salient f e a t u r e s of Indian constitution, Fundamental rights, Fundamental Duties and its legal s t a t u s, Directive principles of state policy-its importance and Implementation.	8 Hours
Module-2	Federal structure and distribution of legislative and financial powers between the Union and the States, The Union legislature - The Parliament - The Lok Sabha and the Rajya Sabha, Composition, powers and functions, Union executive, President of India (with powers and functions), Vice-President, The Council of Ministers and the Prime Minister - Powers and functions.	6 Hours
Module-3	State Government, The State Legislature - composition, powers and functions, State executive, Governor (with powers and functions).	5 Hours
Module-4	Amendment of the Constitutional Powers and Procedure, Emergency Provisions: National Emergency, President Rule, Financial Emergency. Scheme of the Fundamental Right to Equality Scheme of the Fundamental Right to certain Freedom under Article 19, Scope of the Right to Life and Personal Liberty under Article 21. Local Self Government - Constitutional Scheme in India.	5 Hours

Module-5	The Indian Judicial System - the Supreme Court and the High Court's composition, jurisdiction and functions, Judicial review, Judicial activism, independence of Judiciary in India.	
Total		28 Hours

Text Books:

- T1. D. D. Basu, Introduction of Constitution of India, 22nd Edition, LexisNexis, 2015.
- T2. K. Subas, An Introduction to India's Constitution and Constitutional Law, 5th Edition, National Book Trust India, 2011.

CO1	Provide basic information about Indian constitution.
	Analyze the legalities and related issues of drafting, adoption and enforcement of the Indian
CO2	Constitution as a fundamental law of the nation and the provisions and privileges of Indian
	Citizenship.
CO3	Understand and judiciously use the fundamental rights and privileges envisaged in the
COS	constitution.
CO4	Analyze the major dimensions of Indian Political System and to contribute in protecting and
CO4	preserving the sovereignty and integrity of India.
CO5	Know the successful functioning of democracy in India
CO6	Understand their obligations, responsibilities, privileges & rights, duties and the role that they
	have to play in deciding the Administrative Machinery of the country.

Type	Code		L-T-P	Credits	Marks
BS	BTBS-T-BS-201	Introduction to Mathematics - II	4-1-0	3	150

Objectives	The objective of this course is to familiarize the students with the knowledge and		
	concepts of numerical methods to solve the system of linear equations & ordina		
	differential equations, interpolation, and applications of vector integral calculus.		
Pre-Requisites	A sound knowledge of linear algebra, basic calculus, and matrix algebra.		
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are		
	planned to be interactive with focus on problem solving activities.		

Module-#	Topics	Hours
	Series Completion, Coding-Decoding, Data Sufficiency, Random variable,	
Module-1	Root finding of algebraic and transcendental equations: Bisection method, Secant and Regula-falsi methods, Newton's method, Fixed point iteration method, Rate of convergence.	8 Hours
Module-2	Interpolation: Lagrange interpolation, Newton's divided difference interpolation, Newton's forward and backward interpolation, Introduction to Numerical Differentiation.	8 Hours
Module-3	Numerical Integration: Newton-Cotes quadrature formula, Trapezoidal rule, Simpson's rule, 2-point and 3-point Gauss Legendre rule. Solution of ordinary differential equations: Euler's method, Modified Euler's method, Runge-Kutta method (2 nd and 4 th order).	10 Hours
Module-4	Vector Integral Calculus: Line Integrals, Independence of Path, Double Integrals, Green's Theorem, Surface Integrals, Triple Integrals, Gauss Theorem, and Stokes's Theorem (without proof).	12 Hours
	Total	45 Hours

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley India.
- T2. B. V. Raman, Higher Engineering Mathematics, Mc Graw Hill Education Pvt. Ltd.

Reference Books:

- R1. S. Pal and S. C. Bhunia, Engineering Mathematics, Oxford University Press.
- R2. P. V. O'Neil, Advanced Engineering Mathematics, Cengage Learning.
- R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R4. B. P. Acharya, R. N. Das, A Course on Numerical Analysis, Kalyani Publishers

Page 34 of 60

R5. R. S. Aggarwal, A Modern Approach to Verbal & Non-verbal reasoning, S. Chand publication.

Online Resources:

- 1. https://nptel.ac.in/courses/127106019
- 2. https://nptel.ac.in/courses/111102111
- 3. https://nptel.ac.in/courses/111105122
- 4. https://nptel.ac.in/courses/111105121
- 5. https://nptel.ac.in/courses/111105134

CO1	Know the basic concepts of verbal, non-verbal reasoning and logical ability for better employability.	
CO2	Apply the numerical methods to find the approximate solutions of algebraic and transcendental equations.	
CO3	Understand the basic concepts of mathematical theory of probability.	
CO4	Solve the numerical solution of differential equations and use of various techniques for evaluating the integrals.	
CO5	Calculate line integrals in two dimensions for differential forms and also calculate double integrals in Cartesian and polar coordinates over the domains.	
CO6	Apply Green's theorem, Gauss theorem and Stokes's theorem to evaluate line or double or triple integrals.	

Type	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTBS-T-ES-203		4-1-0	3	150

Objectives	Exploring basic data structures concept used in Industries
Pre-Requisites	Knowledge of Mathematics in Secondary Education and basic Programming concept.
0	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.

Module-#	Topics	Hours
Module-1	Introduction: Basic Terminologies: Algorithm Analysis: Mathematical Background, Model, Analyze, Running Time Calculations, Asymptotic Notations, classification of data structure. Basic data st ructure:1d-Array and 2d-Array Data Structure Operations: insertion, deletion, traversal Sparse matrix, address calculation of Array, ADT(Abstract Data type),DMA(Dynamic memory allocation),pointer, Self-referential structure. A comparison between DMA and SMA. De-allocation Strategy, Buddy System, Compaction.	
Module-2	Stacks and Queues: ADT Stack array representation and its operations: Algorithms Applications of Stacks: Expression Conversion and evaluation of expression and corresponding algorithms, application of stack. ADT queue, Types of Queue: Simple Queue, Circular Queue, Priority Queue; Array representation and Operations on each types of Queues: Algorithms and their analysis, application of queue. (Simulation, CPU Scheduling in Multiprogramming Environment, Round Robin Algorithm) Priority Queues.	8 Hours
Module-3	Linked Lists: Singly linked lists: Representation in memory, Algorithms of several operations: Traversing, Searching, Insertion into, Deletion from linked list; Linked representation of Stack and Queue, Header nodes, Doubly linked list: operations on it and algorithmic analysis; Circular Linked Lists: all operations their algorithms and the complexity analysis.	8 Hours
Module-4	Sorting and searching: Objective and properties of different sorting algorithms: Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap Sort, Radix	

Total		40 Hours	
	Shortest path algorithm: Dijkstra's algorithm, topological sorting.		
	classification of graph Minimum spanning tree (Kruskal and prims algorithm),		
	representation), Graph search and traversal algorithms and complexity analysis,		
	Graph: Basic Terminologies and Representations (Adjacency matrix and linked list		
	Applications of all trees.		
	Tree: definitions, algorithms and analysis, Red black trees: definition and operation,		
Module-5	their algorithms with complexity analysis. Applications of Binary Trees. B Tree, B+		
	Search Tree, Tree Traversing, AVL Tree; Tree operations on each of the trees and		
	Trees: Basic Tree Terminologies, Different types of Trees: Binary Tree, Binary		

Text Books:

- T1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press
- T2. Data Structures with C (Schaum's Outline Series), Seymour Lipschutz, TMH

Reference Books:

- R1. Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B.A. Forouzan, Cengage Learning
- R2. Data Structures And Algorithms A.V.Aho, J. E. Hopcroft, and J. D. Ullman, I, Pearson Education, First Edition Reprint 2003R3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publication.
- R3. How to solve it by Computer, 2nd Impression by R. G. Dormey, Pearson Education
- R4. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education

CO1	Understand the concept of Dynamic memory management, data types, algorithms, Big O	
CO2	Understand basic data structures such as arrays, linked lists, stacks and queues.	
CO3	Understand the implementation and application of linear data structure	
CO4	Understanding of tree traversal techniques and their application	
CO5	Understand the graph traversal and its application In real life.	
CO6	Understand Algorithm for different sorting, searching techniques and their running	
CO0	complexity, and basic concept of hash function	

Type	Code		L-T-P	Credits	Marks
HS	BTBS-T-HS-201	Communicative English-II	2-0-0	1	150

Objectives	
	To develop interpersonal skills
	To enhance presentation skills
	To distinguish different types of letters
	To understand the nuances of business etiquettes.
	Describe the appropriateness of the written contents
	Define various kinds of texts and compose effective business messages.
Pre-Requisites	To have basic knowledge on corporate communication
Teaching Pedagogy	Regular class room lectures with use of PPT when required, sessions are planned to be interactive with activity based teaching.

Module-#	Topics	Hours	
Module-1	Corporate Communication	10 Hours	
	Interpersonal Communication ,Non-Verbal Communication, Elements of Non-verbal communication, Presentation-Oral and Power Point Presentation, Group Discussion-Factual GD & Controversial GD		
Module-2	Writing Skills		
	Formal Letters- Letter for placing an order, Letter of Complaint, Job Application Letter Resume Building-Chronological, Functional& Combinational Reports-Format and Components of Long Report ,Format and Components of Short Report, Proposals-Format and Components of Proposal	8Hours	
Module-3	Soft Skills Professional Etiquette, Team work Negotiation Skills	7 Hours	

TextBooks:

- T1. Corporate Communication-Pragyan Rath, K.Shalini, Debankita Ray
- T2. Communication Skills- Sanjay Kumar & Puspalata- Oxford
- T3. Soft Skills- Dr. K. Alex- S. Chand

ReferenceBooks:

- R1. Corporate Soft Skills-Sarvesh Gulati- Rupa Publications
- R2. Corporate Communication-Dr, Sapna. M.S.-Trends and Features
- R3. Business Communication-Pooja Khanna-Vikas Publishing
- R4. Communication Skills- Anjana Tiwari- Khanna Publishing (1st Ed.)

Online Resources:

https://communicationmgmt.usc.edu www.britishcouncil.org https://eltai.ac.in

CO1	Enhance the elements of communication in a corporate world
CO2	Develop skills to meet the placement challenges
CO3	Justify the different forms of business correspondence
CO4	Implement different forms of writing for business needs
CO5	Identify the different shades of business etiquettes
CO6	Define the importance of teamwork and negotiation skills

Type	Code	Skill Enhancement and Personality	L-T-P	Credits	Marks
SC	BTBS-T-SC-201	Development (SEPD)-II	2-0-0	1	100

Objectives	The objective of this course is to help students work on their personality development through an understanding of Soft skills, participate in Group Discussions (GD), present their views in public, perform well in Personal Interviews, and become successful in a corporate scenario
Pre-Requisites	The objective of this course is to help students work on their personality development through an understanding of Soft skills, participate in Group Discussions (GD), present their views in public, perform well in Personal
Teaching Scheme	Ample tasks designed to facilitate communication through pair work, group/team work, individual and group presentations, discussions, role plays, listening to audios, watching videos, business writing and vocabulary

Module-#	Topics		Hours
	Introduction to Group Discussions (GD):		
Module-1	1. Mock GD 1		10 Hours
Wioduic 1	2. Mock GD 2.		10 Hours
	Interview skills:		
	1. Preparing for interviews through mock interview session.		
	2. Writing a good and effective C.V. and SWOC presentation		
	Assertiveness and EI:		
Module-2	1. Theory inputs and activities.		10 Hours
	2. Conducting Mock Interviews		
	Team work activity:		
	1. Building blocks of a team - discussion & activity.		
	2. Panel Discussion.		
	Summarizing and note making:		
	1. Techniques and important tips.		
	Personality assessment:		
	1. self-assessment and discussion		
	·	Total	20 Hours

Text Books:

- T1.Personality Development by D.P.Sabharwal
- T2. Personality Development by L.Kendo
- T3.Effective Technical communication by M.A.Rijvi
- T4.English Phonetics of Indian Students by T.Balasubramaniam

Reference Books:

- T1.Here, There & Everywhere by Sudha Murty
- T2. Personality Development by Swami Vivekananda
- T3.Technical communication: Principle and practice by M.Raman and S,Sharma

Online Resources:

- 1. https://nptel.ac.in/courses/109104107
- 2. https://nptel.ac.in/courses/109104031

CO1	Improve habits, attitudes, preferences and experience
CO2	Identify their own potentials and accept their own limitations
CO3	Overcome their limitations and move towards self esteem
CO4	Maximize self-potential in enabling a holistic development
CO5	Participate effectively in Group Discussions.

Type	Code	Elements of Engineering	L-T-P	Credits	Marks
BS	BTBS-P-BS-102	Physics Laboratory	0-0-2	1	100

Objectives	The laboratory should help students to understand the role of direct observation in physics and to distinguish between inferences based on theory and on the outcomes of experiments.		
Pre-Requisites	Knowledge of Physics in Secondary Education		
TeachingPedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.		

Module-#	Topics	
Experiment-1	Determination of acceleration due to gravity (g) by bar pendulum.	2 Hours
Experiment-2	Determination of rigidity modulus by using Barton's apparatus.	2 Hours
Experiment-3	Determination of surface tension of a given liquid by capillary rise method.	2 Hours
Experiment-4	Determination of wavelength of an unknown monochromatic source of light using Newton's ring apparatus.	
Experiment-5	Plotting of V~I characteristics of PN junction diode.	2 Hours
Experiment-6	t-6 Determination of Young's modulus by using Searle's apparatus	
Experiment-7	Plotting of input and output characteristics of BJT (Bipolar junction	2 Hours
Experiment-8	Determination of grating element of a plane diffraction grating.	2 Hours
Experiment-9		
Experiment-10	Verification of laws of vibrations in a stretched string using Sono metre.	2 Hours
	BEYOND SYLLABUS	2 Hours
Experiment-11	To find out the resistance of unknown wire by using Meter bridge.	2 Hours
Total		22 Hours

CO1	Understand the laws to various process and real system.
CO2	Study basics of semiconductor & devices and their applications in different areas.

CO3	Distinguish the importance of different properties of material.			
CO4	Design new instruments with practical knowledge.			
CO5	Analyze, interpret and summarize the experimental results and compare with theoretical			
CO6	Troubleshoot effectively in laboratory settings.			

Indicative Projects

- 1. To make a periscope to understand the laws of reflection.
- 2. To make an electromagnet.
- 3. To make a line following Robot.
- 4. To make a portable Mobile charger.
- 5. To make a Rain Alarm /soil moisture Detector.
- 6. To make an Automatic street light.
- 7. To make a proto type solar panel.
- 8. To make a gas leakage detector.
- 9. To make a temperature sensor.
- 10. To build an earthquake alarm.
- 11. To make a coin cell by using super capacitor material.

Туре	Code		L-T-P	Credits	Marks
BS	BTBS-P-BS-103	Applied Chemistry Laboratory	0-0-2	1	100

The laboratory will help the students on the volumetric analysis, calculations mass- volume relation etc. Objectives The students will get knowledge on the synthesis of different medicines, prep soap & detergents etc. The students will get knowledge on the operation of different equipment's.	
Pre-Requisites	Knowledge of chemistry in Secondary Education.
TeachingPedagogy	Regular practical classes with use of virtual lab as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours	
Experiment-1	Standardization of KMnO4 by using sodium oxalate. Determination of Fe2 ⁺ ion in a double salt.		
Experiment-2	Preparation of Aspirin	2 Hours	
Experiment-3	iment-3 Determination of rate constant for saponification of ester with an alkalitirimetric		
Experiment-4	Determination of turbidity of different samples of water by	2 Hours	
Experiment-5	Estimation of Ca ²⁺ ion in a sample of limestone	2 Hours	
Experiment-6	Experiment-6 Determination of partition coefficient of I_2 between benzene and water.		
Experiment-7 Determination of flash and fire point of an oil by Pensky Martine's apparatus.			
Experiment-8	Determination of viscosity of lubricating oil by Redwood viscometer.		
Experiment-9	periment-9 Determination of available chlorine in a sample of bleaching powder		
Experiment-10		2 Hours	
	BEYOND SYLLABUS		
Experiment-11	Preparation of soap and detergent.	2 Hours	
	Total	22 Hours	

Course Outcomes: At the end of this course, the students will be able to:

CO1	Acquire knowledge on the basic volumetric analysis.
CO2	Classify various fuels based on combustion parameters and understand the working Principle based on their properties.
CO3	Know the importance of analytical techniques, instrumentation and applications
CO4	Impart knowledge on of water quality parameters and treatment of water.
CO5	Acquire Knowledge about synthesis and preparation of drugs, soap etc.

Indicative Projects

- 1. Preparation Detergent Powder From Paddy Husk
- 2. Quantity of Presence of Casein in Different Samples of Milk
- 3. Preparation of Organic Dye.
- 4. Preparation of Toilet Soaps
- 5. Presence of Oxalate Ions in Guava Fruit and Different Stages of Ripening.
- 6. Sterilization of Water Using Bleaching Powder.
- 7. Preparation of ash brick.
- 8. Preparation of Gelatin.
- 9. Preparation of Paracetamol.
- 10. Preparation of Ink.
- 11. Effect of Potassium Bisulphate as a Food Preservative.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-101	Basic Electrical and Electronics Engineering Laboratory	0-0-2	1	100

Objectives	To train the students in conducting load tests on electrical machines. To gain practical experience in characterizing electronic devices. To train the students to use CRO and DSO for measurements	
Pre-Requisites Knowledge of Physics and Mathematics in Secondary Education		
Teaching Regular practical classes with use of virtual lab as and when required, session planned to be interactive with focus on problem solving activities.		

Module-#	Topics	Hours		
Experiment-1	Study of Different Electrical measuring Instruments and other electrical	2 Hours		
	equipment			
Experiment-2	Measurement of Voltage, current, power and power factor calculation in series	2 Hours		
	R-L-C circuit.			
Experiment-3	Connection and Running of DC Motors, DC generators, 3- phase Induction	2 Hours		
	motors and 1- phase Transformers.			
Experiment-4	Connection and Demonstration of Domestic Wiring System.	2 Hours		
Experiment-5	Model Study & Connection of Different Lamps (Mercury Vapor Lamp,	2 Hours		
	Tungsten, LED Bulbs, Fluorescents, CFL)			
Experiment-6	-6 A:- Identification of electronic components, devices and Basic Sensors,			
	B: - Study and use of CRO/ DSO, Function generator to view and measure			
	different wave forms.			
Experiment-7	Design of Simple Diode Circuit and Study of V-I characteristics of			
	semiconductor Diode & calculation of DC and AC Resistance			
Experiment-8	Design of Half – wave rectifier and full wave rectifier circuits, and calculation	2 Hours		
	of efficiency			
Experiment-9	Design of inverting and non- inverting amplifiers using Op-Amp to view and	2 Hours		
	measure waveforms			
Experiment-10	Study and truth table verification of logic gates.			
	BEYOND SYLLABUS			
Experiment-11	Design of simple BJT Bias circuit to draw VI characteristics (input & output) of a NPN transistor (in CE configuration)			

Experiment-12	Verification of Ohm's Law	2 Hours
Total		24 Hours

Online Resources:

- 1. http://vlabs.iitkgp.ernet.in/be/
- 2. http://sl-coep.vlabs.ac.in/

Course Outcomes: At the end of this course, the students will be able to:

CO1	Identify different Electrical Instruments and measure different parameters.
CO2	Study connection and demonstration of DC generators, motors and wiring systems.
CO3	Study design and connection of Different Lamps
CO4	Identify active and passive electronic components and handle measuring instruments like
CO5	Design different circuits using diode, BJT and opamps.
CO6	Design and analyze logic gates

Indicative Projects

SL. NO.	NAME OF THE PROJECT	
1	Night light using LDR.	
2	Automatic Fan ON/OFF using Temperature Sensor.	
3	Moisture Controller using Moisture Sensor.	
4	IR based security system using IR sensor (Transmitter & Receiver)	
5	Fire Alarm using Temperature Sensor.	
6	Light ON /OFF using Piezo Sensor.	
7	Clap sound Operated using Sound Sensor.	
8	Smoke Detector MQ3	
9	Light ON /OFF using Metal Detector Sensor.	
10	Light ON /OFF using Alcohol Detector MQ.	
11	Sound system on/off Rain Detector	
12	Motion detector using IR pair.	

Type	Code	Basic Mechanical and Civil Engineering	L-T-P	Credits	Marks
ES	BTBS-P-ES-102	Laboratory	0-0-2	1	100

Objectives	To train the students in conducting different test on engineering materials. To gain practical experience in characterizing soil and handling hydraulic machines. To train the students to use different measuring instruments.	
Pre-Requisites	Knowledge of Physics and Chemistry in Secondary Education	
Teaching Pedagogy	Regular practical classes with use of virtual labas and when required, sessions are planned to be interactive with focus on problem-solving activities.	

Module-#	Module-# Topics	
Experiment-1	Cut-section of two stroke & four stroke petrol and diesel engine.	2 Hours
Experiment-2	Centrifugal pump apparatus, Reciprocating pump apparatus. Gear oil Pump	2 Hours
Experiment-3	Pelton & Francis Turbine.	2 Hours
Experiment-4	Simple ,Compound & reverted Gear train	2 Hours
Experiment-5	Model of Domestic refrigerator	2 Hours
Experiment-6	Compressive Strength of Brick	2 Hours
Experiment-7	Bearing of Line.	2 Hours
Experiment-8	Compressive Strength of Cement	2 Hours
Experiment-9	Determination of Specific gravity of soil	2 Hours
Experiment-10	Study of water quality (pH, Turbidity, TS)	2 Hours
	BEYOND SYLLABUS	2 Hours
Experiment-11	CNC Wood Router	2 Hours
Experiment-12	Study of Total Station.	2 Hours
Total		24 Hours

CO-1	Acquire knowledge on different components and working of IC Engines, turbines and pumps
CO-2	Understand the kinematics of machinery using gear trains
CO-3	Analyze the operation of domestic appliances

CO-4	Identify different properties of building materials.
CO-5	Study the engineering properties of soil.
CO-6	Explore the uses of different instruments used in civil engineering work

Indicative Projects (Mechanical)

- 1. Component Preparation using 3D Printing
- 2. Specimen preparation technique for Metallurgical study.
- 3. To prepare a ship model for verification of Archimedes principle.
- 4. Model of Steam power plant.
- 5. Overhead gantry crane of 3-axis movements.
- 6. Leading & Trailing brake arrangement in Drum Brake
- 7. High speed reduction in gear drive by using worm & worm wheel.
- 8. Specimen preparation and its test in UTM.
- 9. Wind Turbine Model.
- 10. Preparation hexagonal headed Bolt (Facing & Turning)
- 11. Specimen preparation and its test in Fatigue testing machine.
- 12. Water turbine Project Model
- 13. Preparation hexagonal headed Bolt (Step Turning & Thread Cutting)
- 14. Preparation of Components/names in CNC Wood Router
- 15. Bio-fuel preparation and Study.
- 16. Compound gear train using by using Spur gear.
- 17. Fast and loose pulley arrangement using Belt drive
- 18. Development of cone clutch for power transmission.
- 19. Conversion of Reciprocating to rotary motion using Crank & Connecting rod.

Indicative Projects (Civil)

- 1. Intelligent transportation system. prototype
- 2. Glass fiber reinforced concrete.
- 3. pH test of drinking water in gift campus.
- 4. Preparation of building blocks.
- 5. Identification of different parts of dam prototype
- 6. Pavement layer identification prototype
- 7. Concept of suspension bridge –prototype
- 8. Construction of English bond in cement mortar.
- 9. Study of properties for the locally available Soil.
- 10. Testing of compressive strength of the local stone in Khordha.
- 11. Admixtures used in RMC visit to plant
- 12. Preparation of fly ash brick.
- 13. Seasoning of timber.
- 14. Types of timber used in construction.
- 15. Tensile strength test of steel in construction
- 16. Identification of components of a building prototype

Page 49 of 60

17. Various field test of cement.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-103	Basic Programming Skills Laboratory	0-0-4	2	100

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real life problem solving activities.

Detailed Syllabus

Topics	Hours
Familiarity with basic UNIX/LINUX command, vi editor. Sample C Program.	2 Hours
Programs on arithmetic expressions, operators, and precedence.	2 Hours
Programs on Conditional Branching.	2 Hours
Programs on Loops.	4 Hours
Programs on single dimensional array and Strings	2 Hours
Programs on two-dimensional array.	4 Hours
Programs on Functions.	4 Hours
Programs on Recursive Functions.	2 Hours
Programs on Pointers.	4 Hours
Programs on Structure and Union	4 Hours
Programs on File Handling.	4 Hours
Project	6 Hours
Total	
	Familiarity with basic UNIX/LINUX command, vi editor. Sample C Program. Programs on arithmetic expressions, operators, and precedence. Programs on Conditional Branching. Programs on Loops. Programs on single dimensional array and Strings Programs on two-dimensional array. Programs on Functions. Programs on Recursive Functions. Programs on Pointers. Programs on Structure and Union Programs on File Handling. Project

CO1	Remember basic understanding of computer and basic concepts of running programs.	
CO2	Understand the concepts of decision making and looping for solving problems.	
CO3	Learn to concise and precise on implementing pseudo code using functions	
CO4	Illustrate the usages of array, function and pointer in programming.	
CO5	Select the user define data type structure, union and enum for problem solving.	
CO6	Develop projects using different file handling functions.	

Projects using C Programing

- 1) Unit Converter
- 2) Customer Billing System in a Shopping Mall
- 3) Banking Management System
- 4) University Grading System
- 5) Bus Ticket Reservation System
- 6) Home Automation System
- 7) Digital Wall Clock
- 8) Book Support Automation
- 9) Lab Management System
- 10) Nursery Management System

Arduino based Project

- 1) Obstacle detection using Arduino
- 2) Controlling 4 LEDs to make different patterns
- 3) Voice Activation System
- 4) Use Humidity Sensor using Arduino
- 5) Arduino Based Color Detector
- 6) Touch Dimmer Switch Circuit Using Arduino
- 7) Wireless Door Bell
- 8) Arduino Traffic Light Controller
- 9) Frequency Counter Using Arduino
- 10) Arduino 4-Digit 7-Segment LED Display
- 11) Arduino based Digital Thermometer
- 12) Arduino Light Sensor
- 13) Portable Ultrasonic Range Meter
- 14) Security Alarm System Using Arduino
- 15) Arduino Alarm Clock
- 16) Interfacing LCD with Arduino

Type	Code	Communicative English Lab-I	L-T-P	Credits	Marks
HS	BTBS-P-HS-101		0-0-3	1.5	100

Objectives	
	To develop the skills in communication.
	To evaluate the speaking skills with communicative efficiency.
	To distinguish the sub skills of reading comprehension for better understanding.
	To implement the process of effective writing.
	Describe the appropriateness of the written contents
	Define various kinds of texts and compose effective business messages.
Pre-Requisites	To have basic knowledge on LSRW skills
Teaching Pedagogy	Regular classroom lectures with use of PPT when required, sessions are planned to be interactive with examples to be acquainted with different types of communication

SL No	NAME OF THE ACTIVITY	HOURS
ACTIVITY 1	Role Play	2 Hours
ACTIVITY 2	Speech	2 Hours
ACTIVITY 3	Narration	2 Hours
ACTIVITY 4	Parts of Speech(New)	2 Hours
ACTIVITY 5	Subject- Verb Agreement	2 Hours
ACTIVITY 6	Auxiliary Verbs	2 Hours
ACTIVITY 7	Sounds of English	2 Hours
ACTIVITY 8	Reading Comprehension	2 Hours
ACTIVITY 9	Formal Letters	2 Hours
ACTIVITY 10	Preparing Agenda & Minutes	2 Hours
Total		20 Hours

CO1	Develop the understanding of application of language.
CO2	Evaluate the rules of language for effective communication
CO3	Experiment the Pronunciation English Language.
CO4	Application of methods and strategies for Reading.
CO5	Recognize the different forms of Formal Writing
CO6	Discuss LSRW in support to the English language

Type	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-104	Engineering Graphics with Auto-CAD	0-0-3	1.5	100
		Laboratory			

Objectives	To develop the ability to produce simple Engineering Drawings based on current practice and to increase the skill to read the Product, Manufacturing, and Construction drawings used in Industries.	
Pre-Requisites	-Requisites Basic Knowledge on simple Geometry And shape of Simple Solid's	
Teaching	Regular practical classes with use of virtual labs and when required sessions are	
Pedagogy	planned to be interactive with focus on problem solving activities.	

Module-#	Topics	Hours
Experiment-1	To prepare a sheet on Lines and their uses.	3Hours
Experiment-2	To prepare a sheet on Lettering, dimensioning.	3Hours
Experiment-3	To prepare a sheet on Projection of point and lines.	3Hours
Experiment-4	To prepare a sheet on Projection of planes & Solids.	3Hours
Experiment-5	To draw Lines/Planes/ solids using Auto CAD.	3Hours
Experiment-6	To prepare a sheet on section of Solid and development of surfaces.	3Hours
Experiment-7	To draw the Ortho graphics projections of solids and sectioning using Auto CAD.	3Hours
Experiment-8	To Prepare a sheet on isometric projections.	3Hours
Experiment-9	To draw isometric view of solids using Auto CAD.	3Hours
Experiment-10	To prepare a sheet on Building Drawing.	3Hours
	BEYOND SYLLABUS	
Experiment-11	To draw Ortho Graphic views of standard Isometric Solids.	3 Hours
Total		33 Hours

After completing this course the students should be able to:

CO1	Understand the visual aspect of engineering drawing, scales and Orthographic Projections	
CO2	Acquire knowledge on projection of points, lines and plane surfaces and solids.	
CO3	Understand the basics of Auto CAD, Commands and Toolbar.	
CO4	Apply modern engineering tools like Auto CAD and creating working drawings on sectioning	
CO4	of Solids and development of surfaces.	
CO5	Able to draw Isometric view of standard Solids using Auto CAD.	

Indicative Projects

- 1. 2D Drawing from Simple 3D Object With given Specification.
- 2. Component Diagram of Simple Physical Sheet Metal Part, Worm Gear, Hub-Shaft.
- 3. Nut-Bolt-Washer assembly, simple Plastic component
- 4. 2D Drawing from Simple 3D Object of Agriculture component..
- 5. Drawing of simple Storage Bin/Silo.
- 6. Drip Layout Sketch.
- 7. Drawing of Rooftop Garden Planning
- 8. Drawing of switch, Led monitor.
- 9. Drawing of Plug socket, Diode & Transistor.
- 10. House Wiring Diagram For a room having 1-Lamp, 1-Fan and 1-Plug socket.
- 11. 2D drawing of Disc Antenna, Common electronics components
- 12. 2D drawing of Electronics components symbol diagram with circuit.
- 13. Drawing Of All Simple Graphic Element & Monitor stand..
- 14. Drawing monitor
- 15. 2D drawing of Keyboard and CPU.

Type	Code		L-T-P	Credits	Marks
ES	BTBS-P-ES-105	Workshop Practice –I Laboratory	0-0-3	1.5	100

9	The laboratory should help students to understand the role of different tools & its function for different operation by manually or by machine to get different job as required
Pre-Requisites	Knowledge of different geometry in Secondary Education
	Regular practical classes with use of virtual labs and when required, sessions are planned to be interactive with focus on problem solving activities.

Module-#	Topics	Hours
Experiment-1	To make a V-fit from the given mild steel piece	3 Hours
Experiment-2	To make a V-Square fit from the given mild steel piece	3 Hours
Experiment-3	To prepare a Lap Joint with Electric Arc welding.	3 Hours
Experiment-4	To prepare a butt Joint with V-Groove Electric Arc welding. Method.	3 Hours
Experiment-5	To prepare joint by Soldering	3 Hours
Experiment-6	To prepare joint by brazing.	3 Hours
Experiment-7	To prepare a job on given specimen in machine shop. (turning, threading ,knurling,milling,drilling and shaping	3 Hours
Experiment-8	To make the Mortise &tenon –joint wood	3 Hours
Experiment-9	To make the dovetail joint on wood.	3 Hours
Experiment-10	To make tray from sheet metal	3 Hours
	BEYOND SYLLABUS	3 Hours
Experiment-11	To prepare a T-welding by using electric arc welding	3 Hours
Total		33 Hours

After completing this course the students should be able to:

CO1	Learn the safety measures, different tools and equipment used in mechanical workshop.
CO2	Understand the concept of metal joining process and its engineering application.
CO4	Improve understanding of various fitting jobs & its application.
CO4	Understand the various machining process in Machine shop.
CO5	Learn Hands on practices & Job making in Carpentry Shop.

Indicative Projects

- 1. To make Gas cylinder stand by M.S. flat
- 2. To make Refrigerator stand by wooden plank
- 3. To make Wooden table
- 4. To make Partial Parshall flume (Venturi)
- 5. To make Drop spill way(wooden)
- 6. To make Indigenous plough(wooden)
- 7. To make Tray drier(sheet metal)
- 8. To make T.W. switch board for three switches and one socket
- 9. To make Sheet metal box to conduit wiring
- 10. To make Simple open water turbine
- 11. To make Soldering rod
- 12. To make Monitor stand
- 13. To make Phone or Tab stand
- 14. To make Support IOT kit implementation in ceiling fan hanging support rod
- 15. To make multimeter board.

Type	Code	Programming Using Data Structure	L-T-P	Credits	Marks
ES	BTBS-P-ES-203	Laboratory	0-0-4	2	100

Objectives	Exploring basic data structures such as stacks and queues	
Pre-Requisites	Knowledge of Mathematics in Secondary Education and basic Programming concept.	
TeachingScheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real life problem solving activities.	

Module-#	Topics	Hours
Experiment-1	Write a C program to perform matrix addition and multiplication using array	2Hours
Experiment-2	Write a C program to create a stack using an array and perform (i) push operation	2Hours
	(ii) pop operation	
Experiment-3	Write a C program to create a queue and perform	2Hours
	(i) Push	
	(ii) Pop	
	(iii) Traversal	
Experiment-4	Write a C program that converts infix expression into postfix expression	2Hours
	Using Stack operations.	
Experiment-5	Write a C program that evaluates postfix expression using Stack operations	2Hours
Experiment-6	Write a C program that uses functions to perform the following operations on	2Hours
	Single linked list:	
	(i) Creation	
	(ii) Insertion	
	(iii) Deletion	
	(iv) Traversal	
Experiment-7	Write a C program that uses functions to perform the following operations on	2Hours
	Double linked list:	
	(i) Creation	
	(ii) Insertion	
	(iii) Deletion	
	(iv) Traversal in both ways	
Experiment-8	Write a C program that uses functions to perform the following operations on	2Hours
_	Binary Search Tree:	
	(i) Creation	
	(ii) Insertion	

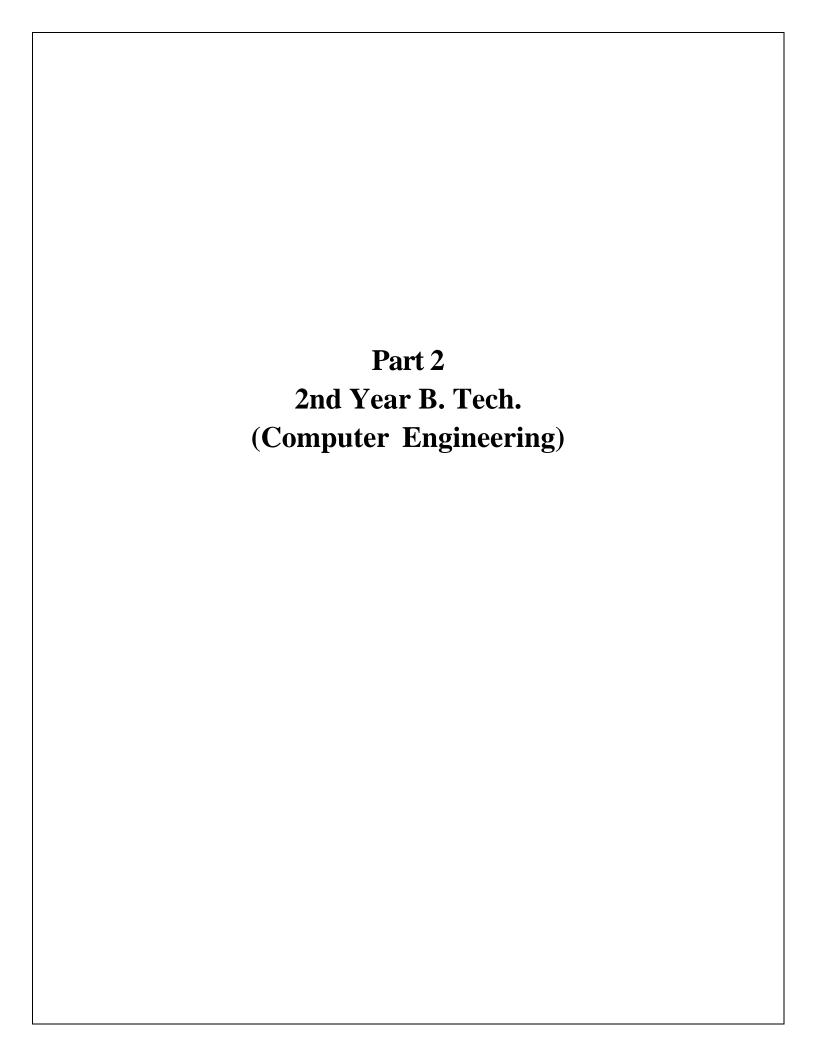
	(iii) Deletion	
Experiment-9	Write a C programs that use both recursive and non-recursive functions to perform the Linear search operation for a Key value in a given list of integers	2Hours
	Write C program that use both recursive and non-recursive functions to perform the Binary search operation for a Key value in a given list of integers	
Experiment-10	Write a C program that implement Bubble Sort method to sort a given list of integers in descending order	2Hours
Experiment-11	Write a C program that implements Quick Sort method to sort a given list of integers in ascending order	2Hours
Experiment-12	Write a C program that implements Insertion method to sort a given list of integers in ascending order	2Hours
Experiment-13	Write a C program that implements merge sort method to sort a given list of integers in ascending order	2Hours
Experiment-14	Write a C program that implements heap sort method to sort a given list of integers in ascending order	2Hours
Experiment-15	Write a C program that implements selection sort method to sort a given list of integers in ascending order	2Hours

CO1	To insert and delete elements from appropriate position in an array.
CO2	To search an element and print the total time of occurrence in the array
CO3	To represent a Sparse Matrix.
CO4	To delete all occurrence of an element in an array.
CO5	Array implementation of Stack.
CO6	Array implementation of Linear Queue.

Indicative Projects Arduino based Project

- 1) Contacts directory System
- 2) Texting editor relied on Stacks
- 3) BST which follows the Memorization procedure
- 4) Search system (in Library)
- 5) Snakes and Ladders Game
- 6) Sorted_double_sentinel_list
- 7) Phone directory application using doubly-linked lists
- 8) Spatial indexing with quadtrees
- 9) Numerical representations with random access lists
- 10) Stack-based text editor
- 11) Personal Diary Management System
- 12) Tic-Tac-Toe Game

Page 58 of 60


13) 14) 15)	Tank Game Travel Agency Management System Pharmacy Management System
Page 5	59 of 60

Type	Code		L-T-P	Credits	Marks
HS	BTBS-P-HS-201	Communicative English Laboratory-II	0-0-3	1.5	100

Objectives	Objective of this course is to enhance presentation skills, equip the students with different forms of business writing and to acquaint them with business etiquette to face corporate challenges
Pre-Requisites	Basic knowledge on corporate communication
Teaching Pedagogy	Regular practical classes with use of virtual lab as and when required and activity and game based session are also planned.

SL No	NAME OF THE ACTIVITY	HOURS
ACTIVITY 1	Interpersonal Communication	2 Hours
ACTIVITY 2	Non Verbal Communication	2 Hours
ACTIVITY 3	Presentation	2 Hours
ACTIVITY 4	Group Discussion	2 Hours
ACTIVITY 5	Personal Interview	2 Hours
ACTIVITY 6	Formal Letters	2 Hours
ACTIVITY 7	Building Resume	2 Hours
ACTIVITY 8	Report Writing	2 Hours
ACTIVITY 9	Team Work	2 Hours
ACTIVITY 10	Negotiation Skills	2 Hours
	Total	20 Hours

CO1	Develop knowledge in interpersonal communication
CO2	Evaluate skills for corporate readiness.
CO3	Implement the different forms of business correspondence.
CO4	Recognize better pronunciation and accent in English Language,
CO5	Execute the analytical skills and problem solving skill in a Team.
CO6	Identify the business etiquettes and competent

Contents

Second Year

Curriculum Structure

B. Tech (CE) (3rd Semester & 4th Semester)

Item	Page No
Curriculum Structure	2
Evaluation Process	8
Detailed Syllabus	
Theory	Page No
Mathematics for Computer Science	10
Database Management Systems	12
Digital Logic Design	14
Organizational Behavior	16
Object Oriented Programming using JAVA	19
Employment Enhancement Training -B	21
Design and Analysis of Algorithms	29
Computer Organization and architecture	31
Digital Signal Processing	33
Engineering Economics and Costing	35
Python	37
NPTEL	39
Employment Enhancement Training -C	40
Practical	
Database Management System Lab	23
Digital Logic Design Lab	24
Object Oriented Programming using JAVA Lab	25
Seminar-I	26
Evaluation of Summer Internship -I	24
Design and Analysis of Algorithms lab	42
Computer Organization and architecture Lab	43
Python Lab	44
Project-III	45

Type	Code	Mathematics for Computer	L-T-P	Credits	Marks
BS	BTBS-T-BS-301	Science	4-1-0	3	200

Objectives	 The objective of this course is to familiarize the students with the knowledge and concepts of Laplace transformation. To familiarize the students with the knowledge and concepts of Fourier series To be familiar with the concept of discrete mathematics.
Pre-Requisites	A basic knowledge of relation, function, derivative, and integration.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Module	Topics	Hours
Module-1	Laplace transformation, Inverse Laplace transformation, Unit step function, Dirac's delta function, Convolution, applications in solving differential equations, and Integral Equations	
Module-2	Fourier series, Fourier expansion of functions of any period, Even and odd functions, Half range Expansion.	6 Hours
Module-3	Fourier Integral, Fourier transform, Fourier sine and cosine transforms, Basic propreties.	6 Hours
Module-4	Relation and Functions: Properties of binary relations, Reflexive, Symmetric, Transitive, Anti-Symmetric, Partial Ordering and Total Ordering, Equivalence relations, Closure of relations, Warshall's algorithm.	9 Hours
Module-5	Lattices and Properties, Boolean Algebra: Basic Properties, CNF and DNF, K- map.	7 Hours
Module-6	Numeric and Generating Functions: Discrete Numeric Functions, Generating Functions, Recurrence relations: Linear recurrence relations with constant coefficients, Solution of recurrence relations (Homogeneous and Nonhomogeneous) by the method of generating functions.	9 Hours
	Total	45

Text	Books:				
1	Advanced Engineering Mathematics, E. Kreyszig, Wiley India, ISBN 13: 9780470458365.				
2	"Fundamentals of Database System", R.Elmasri, S.B Navathe, Adision Wesley Publishing, ISBN-13: 978-0-136-08620-8 1.				
3	Discrete Mathematics and its Applications, Kenneth H. Rosen, Tata McGraw Hill, 5 th Edition, 2003, ISBN-13. 978-0070681880.				
4	Elements of Discrete Mathematics: A computer Oriented Approach, C. L. Liu, D. P. Mohapatra, McGraw Hill Education (India) Private Limited, 4th Edition, 2013, ISBN-13. 978-1259006395.				
Refe	erence Books:				
1	Engineering Mathematics, S. Pal and S. C. Bhunia, Oxford University Press, ISBN-13: 978-1680921229.				
2	Advanced Engineering Mathematics, P. V. O'Neil, Cengage Learning, ISBN-13. 978-0470458365.				
3	Higher Engineering Mathematics, B. S. Grewal, Khanna Publication, ISBN-13. 978-8174091956.				
4	Graph Theory with applications to Engineering & Computer Science, N. Deo, Prentice Hall of India,2006, ISBN-13: 978-8120301450.				
5	Discrete Mathematical Structures with Applications to Computer Science, J. P. Tremblay and R.Manohar, Tata Mc-Graw Hill, 2001, ISBN-13. 978-0074631133.				
6	Discrete Mathematics, S. Lipschutz, Tata McGraw Hill, 2005, ISBN-13. 978-1930190863.				
7	Discrete Mathematics for Computer Scientists & Mathematics, Joe L. Mott, A. Kandel, and T. P. Baker, Prentice Hall of India, 2nd Edition, 2006, ISBN-13. 978-9332550490.				

Online Resources:

- 1. https://nptel.ac.in/courses/111104075/
- 2. https://nptel.ac.in/courses/111104078/
- 3. https://nptel.ac.in/courses/111104092/
- 4. https://nptel.ac.in/courses/122104017/
- 5. https://nptel.ac.in/courses/122104017
- 6. https://nptel.ac.in/courses/111102111/
- 7. https://nptel.ac.in/courses/111105035/287
- 8. https://nptel.ac.in/courses/111105035/28

CO1	Understand Laplace transforms and their applications.		
CO2	Apply Fourier series and Fourier Transform of a given function appropriately		
CO3	Understand the special functions.		
CO4	Know about relation and function with their applications.		
CO5	Understand generating functions, recurrence relations & their applications in computer		
	science.		
CO6	Understand discrete numeric functions and generating functions and their		
	applications.		

Type	Code	Database Management	L-T-P	Credits	Marks
CS	BTCS-T-PC-302	Systems	3-0-0	3	200

Objectives	 Understand the relational database design principles. Familiar with the basic issues of transaction processing and concurrency control. Familiar with database storage structures and access techniques.
Pre-Requisites	Fundamental computer knowledge that includes concepts of computer architecture, storage and hardware. Knowledge of MS Excel or other Tabular formats.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Module	Topics	Hours		
Module-1	Introduction to DBMS: Database applications, purpose, accessing and modifying databases, need for transactions; Types of DBMS: Data models, DB languages; Architecture: Users and administrators, 3-schema architecture of DBMS, data independence, EF Codd Rule.	06 Hours		
Module-2	ER Model: Basic concepts, Design issues, keys, ER diagram, Entity types, Attributes, Relationships, Relationship types, Weak entity sets, Extended ER features; Relational model: Structure of relational model, Relational algebra, Extended relational algebra Operations.	07 Hours		
Module -	Relational database design: Features of good design, Properties of Relational Decomposition, Functional Dependency; Anomalies in designing DB: Normalization using FDs, Various Normal forms-1NF, 2NF, 3NF, BCNF, Concepts of 4NF, 5NF.	g DB: 08 Hours		
Module -	SQL and Integrity Constraints: Concepts of DDL, DML, DCL; SQL operations: Set operations, Aggregate functions, Constraints, View, Nested sub-queries,. 06 Hou			
Module - 5	PL/SQL, cursor, trigger. Internals of RDBMS: Query optimization, various optimization algorithms.	06 Hours		
Module -	Transaction processing: Transaction processing and Error recovery - concepts of transaction processing, ACID properties, concurrency control, locking based protocols for CC, error recovery and logging, undo, redo, undo-redo logging andrecovery methods.	07 Hours		
	Total	40 Hours		

Text 1	Text Books:			
1	"Database system concepts", Korth, Silverschatz, Abraham, Tata McGraw Hill Publication, ISBN-13. 978-0078022159.			
Refer	Reference Books:			
1	"Database management systems, A Practical Approach", Er.Rajiv chopra, S.Chand Publishing, ISBN-13 978-0071168984			
2	"Fundamentals of Database System", R.Elmasri, S.B Navathe, Adision Wesley Publishing, ISBN-13. 978-0133970777.			
3	"Database management systems", Ramkrishna, Tata McGraw Hill Publication, ISBN-13. 978-0072465631.			

CO1	Understand data models to design a database.
CO2	Illustrate the conceptual design for large enterprises.
CO3	Formulate SQL queries and integrity constraints over relations.
CO4	Apply normalization on database for eliminating redundancy.
CO5	Summarize transaction properties, concurrency control and recovery techniques.
CO6	Explain various data storage and security mechanisms.

Type	Code	Digital Logic Design	L-T-P	Credits	Marks
OE	BTEC-T-OE-303	8 8	3-0-0	3	200

Objectives	 1-To study presentation of various signals in time and spectrum domains, and stability & amp; causality of LSI systems, 2-To study processing of digital signal using Z-transform, discrete Fourier transform. 3-To design IIR & TR filters
Pre-Requisites	Basic Electronics
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Number System: Introduction to various number systems and their Conversion. Arithmetic Operation using 1's and 2's Compliments, Signed Binary and Floating-Point Number Representation. Introduction to Binary codes and their applications. Boolean Algebra and Logic Gates: Boolean algebra and identities, Complete Logic set, logic gates and truth tables. Universal logic gates, realization using universal logic gates.	6 Hours
Module-2	Algebraic Reduction, Canonical Logic Forms, Extracting Canonical Forms, NAND and NOR Logic Implementations, K-Map, QM Method. Combinational Logic Design: Analysis, Design: Specifying the Problem, Concept of Digital Components	8 Hours
Module-3	Binary Adders, Subtraction and Multiplication, An Equality Detector and comparator, Line Decoder, encoders, Multiplexers and De-multiplexers. Hazards and Hazard free circuits. Sequential Logic Design: Flip flop and Timing circuit: set-reset laches, D-flip flop, R-S flip-flop, J-K Flip-flop, Master slave Flip flop, edge triggered flip-flop, T flip-flop	8 Hours
Module-4	Serial in/Serial out shift register, Serial in/Serial out shift register, Serial in/parallel out shift register, parallel in/ parallel out shift register, parallel in/Serial out shift register, Bi-directional register.	6 Hours
Module-5	Analysis, Design: Registers & Counters: Synchronous/Asynchronous counter operation, Up/down synchronous counter, application of counter, Johnson counter, ring counter, sequence generator	6 Hours
Module-6	Semiconductor Memory: Static and Dynamic memory. RAM and ROMs, Programmable Logic Array, Programmable Array Logic.	6 Hours
TOTAL 40 Ho		

Text Books:			
1	Digital Design, 3rd Edition, Moris M. Mano, Pearson Education, ISBN 13: 9788183335805.		
2	A First Course in Digital System Design: An Integrated Approach, India Edition, John P,. Uyemura, PWS Publishing Company, a division of Thomson Learning Inc, ISBN-13: 978-0534934125.		
Reference	Reference Books:		
1	Fundamentals of digital circuits, 8th edition, A. Anand Kumar, PHI, ISBN-13: 978- 8120352681		
2	Digital Fundamentals, 5th Edition, T.L. Floyd and R.P. Jain, Pearson Education, New Delhi, ISBN-13: 978-1639043569.		
2	Digital Electronics, G. K. Kharate, Oxford University Press,		
3	ISBN-13 978-9350141991		
4	Digital Systems – Principles and Applications, 10th Edition, Ronald J. Tocci, Neal S. Widemer and Gregory L. Moss, Pearson Education, ISBN-13 978-0750645829		

CO1	Understand the basic components and laws of digital circuits.
CO2	Learn the representation and simplification of digital circuits
CO3	Analyze and design various Combinational circuits.
CO4	Analyze and design various Sequential circuits.
CO5	Apply the HDL for digital circuits.
CO6	Validate combinational logic circuits using programmable logic devices.

Type	Code	Organizational Behavior	L-T-P	Credits	Marks
HS	BTBS-T-HS-304		3-0-0	3	200

Objectives	 To understand the concepts and theories useful for diagnosing human behavior in modern-day organizations. To examine different aspects of organizational structure such as formation of organizational systems, structure, and processes. To develop an understanding of these theories and of related ideas and concepts and critically evaluate them. To develop skills to deeply analyze human behavior and apply the learning's to organizational context. Understanding the group dynamics and Leadership in the Organization.
Pre-Requisites	To stimulate specific goals and achieve optimal performance from workers, it is useful to explore ways of stimulating fruitful behaviors from workers by studying organizational behavior.
Teaching Pedagogy	Regular classroom lectures with use of ICT as needed. Each session is planned to be interactive with focus on real-world problem solving through case lets.

Module	Topics	Hours
Module 1	Introduction- Nature, Scope, Purpose, Function, Elements of OB. Evolution of OB - Classical, Scientific, Administrative, Human Relation Movement, Bureaucracy, System Theory. Contribution to the field of Management by different Disciplines, Model of OB, Application of OB. Case Let.	10 hours
Module 2	Perception & Learning- Understanding of perception and its basic elements, perceptual selection, social perception, self—perception and identity, perceptual biases. Learning in organization and classical and operant conditioning. Personality- Meaning of Personality, Personality Development, Determinants of personality, Personality Theories, Self-esteem & Development, awareness, Application of personality in the organizational level. Case Let.	10 hours
Module 3	Motivation- Concept of motivation, motivation and behavior, Misbehavior, Types of motives, Management Intervention. Theories of motivation, Need theory, Hygiene theory, Theory X and Theory Y, ERG Theory, Vroom's Expectancy Theory, Equity Theory, Elements of sound motivational system, Money as a motivator, Motivation in Indian organization. Case Let.	6 hours
Module 4	Attitude- Definition, key elements and related concepts (value, opinion, belief and ideology), characteristics of attitudes, attitude formation and measurement, changing attitude, attitude at workplace (job satisfaction, work attitude and organizational commitment). Emotions at workplace: Definition, types, related concepts (mood, temperament), Managing emotions at workplace, emotional intelligence, meaning of stress, Work Stressors, Stress at work place, General Adaption syndrome, emotional labor, Balancing work and Life. Case Let.	4 hours

Module 5	Leadership- Meaning, Leader Vs. Manager, leadership theories, Leadership styles, Leadership in Indian Organization. Group Dynamics- Define Groups & Decisions, Types of Group, Group Behavior, Group Formation, Group Decisions, and Techniques to improve group decision, merits and de-merits of group decision. Case Let.	6 hours
Module 6	Organizational Change- Meaning and Nature of organizational change, Factors of organizational change, Resistance to change, Managing resistance to change, Overcoming resistance to change. Organizational culture- Impact of culture on individuals, Cultural dimensions, Types of culture.	4 hours
	Total	40 hours

Tex	Text Book		
1	A Textbook of Organizational Behavior, by S.S. Khanka, S Chand, ISBN-13 8121943017		
Refe	erence Books		
1	Organizational Behavior, K. Aswathappa, Sadhana Dash, Himalaya Publishing House, ISBN-13. 978-0201154610.		
2	Organizational Behavior. Arun Kumar and N. Meenaskshi .Vikas Publishing House, 2009, ISBN-13. 978-0201154610.		
3	Managing Organizational Behavior, Moorhead & Griffin. CENGAGE Learning, 2014, ISBN-13: 978-0136124436.		
4	Human Behavior at Work. Keith Davies, 2002, ISBN-13. 978-0750645829.		
5	Understanding Organizational Behavior. Pareek, U. Oxford University Press, (2012), ISBN-13: 978-0198070733.		
6	Organizational Behaviour, M. N. Mishra, Vikas Publishing House, ISBN-13. 978-0201154610.		
7	Organizational behavior, N. Kumar & R. Mittal, Anmol Publication, ISBN-13. 978-0201154610.		
8	A Textbook of Organizational Behavior , C. B. Gupta, S Chand, ISBN-13 8121943017		
9	Organizational Behaviour, Robbins/Vohra, Pearson, ISBN-13. 978-0201154610.		

CO1	Discuss the development of the field of organizational behavior and explain the micro
	andmacro approaches.
CO2	Analyses and compare different models used to explain individual behavior
CO2	related tomotivation and rewards.
CO3	Explain group dynamics and demonstrate skills required for working in groups.
CO4	Identify the various leadership styles and the role of leader in a decision-making process.
CO5	Explain organizational culture and describe its dimensions and to examine
003	various
	Organizational designs.
CO6	Discuss the implementation of organizational change.

Type	Code	Object Oriented	L-T-P	Credits	Marks
PC	BTCS-T-PC-305	Programming using	3-0-0	3	200
		JAVA			

Objectives	To learn why Java is useful for the design of desktop and web applications.	
	 To learn how to implement object-oriented designs with Java. To identify Java 	
	language components and how they work together in applications.	
	 To design and program stand-alone Java applications. 	
Pre-Requisites	Knowledge of programming in 'C'	
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned	
Pedagogy	Pedagogy to be interactive with focus on real- life problem- solving	
	activities.	

Module	Topics	Hours
Module-1	Object oriented paradigm: structured versus object-oriented development, Introduction to Object oriented programming concepts: Objects, classes, encapsulation and abstraction, inheritance, polymorphism, dynamic binding, message passing. Executing the program, Architecture of JVM. Understanding First Program and a step forward, Java Tokens, Data types, Operators, Typecasting, Control Structures and Arrays, Conditional Statements, Jumping Statements.	08 Hours
Module-2	Java I/O: Taking Input from keyboard, Command Line Arguments, Using Scanner Class, Using Buffered Reader class. Object and Classes: class and object, functions and data members, static members. Constructors - default constructor, parameterized constructor.	06 Hours
Module-3	 Inheritance: Derived and base classes, public, private, and protected derivations, constructors in derived classes, Constructor call in Inheritance, super keyword, this keyword. Data Abstraction: Basics of Data Abstraction, Understanding Abstract classes, Understanding Interfaces, Multiple InheritanceUsing Interfaces. 	06 Hours
Module-4	Polymorphism: Types of polymorphism, Significance of Polymorphism in Java, Method Overloading, Constructor Overloading, Method Overriding, Dynamic Method Dispatching. String Manipulations: Introduction to different classes, String class, String Buffer, String Builder, String Tokenizer. Wrapper Classes: Introduction to wrapper classes, Different predefined wrapper classes. Conversion of types from one type (Object) to another type (Primitive) and Vice versa, Concept of Auto boxing and unboxing.	06 Hours

Module-5	Packages: Introduction to Packages, Java API Packages, User-Defined Packages, Accessing Packages. Multithreading: Thread in Java, Thread naming and Priorities, Thread execution prevention methods. (yield (), join (), sleep ()), Concept of Synchronization, Inter Thread Communication, Basics of Deadlock, Demon Thread.	06 Hours
Module-6	Exception handling: Error and Exception Handling, Types of exceptions, Hierarchy of Exception classes, Default exception handling in Java, User defined/Customized Exception Handling (try, catch, finally, throw, throws). Abstract Window Toolkit (AWT): Description of Components and Containers, Component/Container hierarchy, Understanding different components/Container classes and their constructors, swing.	08 Hours
	Total	40
		Hours

Tex	Text Book		
1	JAVA Complete Reference (9th Edition), Herbal Scheldt, ISBN-13: 978-1260440232.		
Ref	Reference Books		
1	CORE JAVA For Beginners. (Rashmi Kanta Das), Vikas Publication, ISBN-13: 978-8125950837		
2	Programming in Java. Second Edition. OXFORD HIGHER EDUCATION. (SACHIN MALHOTRA / SAURAV CHOUDHARY), ISBN-13:978-8120352872		
3	Effective Java 3rd Edition ,Joshua Bloch (Author), ISBN-13: 978-0134685991		
4	Java For Dummies 6th Edition, Barry A. Burd (Author), ISBN-13: 978-1119680451		

CO1	Understand the Object-oriented programming concepts and every term of the program.
CO2	Test and execute the programmers by Object and Class and implement inheritance property.
CO3	Implement polymorphism and string manipulation.
CO4	Determine data abstraction and wrapper classes to achieve code reusability.
CO5	Analyze the multithreading and package implementation.
CO6	Understand the hierarchy of file stream classes and the concept of exception handling.

Type	Code		L-T-P	Credits	Marks
SC	BTSC-T-SC-306	EMPLOYMENT ENHANCEMENT TRAINING-B	1-0-0	1	200

Objectives	 The course aims at imparting basic principles of thought process, reasoning and inferencing. Sustainability is at the core of Indian Traditional Knowledge Systems connecting society and nature. Holistic lifestyle of Yogic-science and wisdom capsules in Sanskrit literature are also important in modern society with rapid technological advancements and societal disruptions. The course focuses on introduction to Indian Knowledge System, Indian perspective of modern scientific world-view and basic principles of Yoga and holistic health care system.
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem - solving activities.
redagogy	planned to be interactive with rocus on real life problem. Sorving activities.

Module #	Topic	Hours
Module 1	Introduction to traditional knowledge- Define Traditional Knowledge- Nature and Characteristics- Scope and Importance-kinds of Traditional Knowledge- The historical impact of social change on Traditional Knowledge Systems- Value of Traditional knowledge in global economy.	05 Hours
	Basic structure of Indian Knowledge System Veda - Rigveda,	03 Hours
Module 2	Samaveda, Yajurveda, and Atharvaveda	
Module 3	Upaveda (Ayurved, Dhanurveda, Gandharva Veda & Sthapatyaveda)	03 Hours
Module 4	Vedanga- (Shiksha,, Kalpa, Nirukta, Vyakarana, Jyotisha, Chanda)&	03 Hours
	Upanga - (Dharmashastra, Meemamsa, purana & Tarka Shastra)	
Module 5	Modern Science and Indian Knowledge System	03Hours
Module 6	Yoga and Holistic Health	03 Hours
	Total	20 Hours

Text Book		
1	Quantitative Aptitude ,R S Aggarwal, ISBN-13: 978-0199488780.	
2	Quantitative Aptitude for CAT ,Arun Sharma, ISBN-13: 978-9355321626.	
Reference Books		
1	Fast Track Objective Arithmetic , Arihant Publications, ISBN-13: 978-9312149836.	

CO1	Identify Basic Organization of Computers.
CO2	Identify the addressing modes used in macro instructions.
CO3	Apply algorithms for arithmetic operations and implementation for ALU design.
CO4	Develop micro code for typical instructions in symbolic form.
CO5	Develop the pipeline and its performance.
CO6	Identify Characteristics of Memory System.

Type	Code		L-T-P	Credits	Marks
MC	BTMC-T-	ENVIRONMENTAL ENGINEERING	3-1-0	3	150
	MC-302				

Objectives	1. To Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.
	To Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions
	3. To Identify, formulate, review research literature and analyze complex Environmental Engineering problems using fundamentals of mathematics, sciences and engineering.
	4. To Develop solutions for Environmental Engineering problems and design system components and processes to meet the specified needs with appropriate consideration
	for the public health and safety.
	5. To Apply the knowledge of mathematics, Science and Engineering fundamentals for solution of problems of Environmental Engineering.
Pre-Requisites	Knowledge of Science and technology in Secondary level.
0 00	Regular class room lectures with use of ICT and when required, sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module -1 Ecology & Ecosystem: Components. Ecological concepts and natural Resources: Ecological perspective and value of environment, Environmental auditing, Biotic components, Levels organizations in environment Ecosystem Process: Energy, Food chain, Environmental gradier Tolerance levels of environmental factor. Components of Earth System: Lithosphere, Cryosphere, Hydrosphere, Biosphere and Outer space.		10 Hours
Module -2	Environmental Resources : Natural Resources covering Renewable and Non-renewable Resources, Forests, water, minerals, Food and land (with example of one case study); Energy, Growing energy needs, energy sources (conventional and alternative). Hydrological cycle, water balance,	6 Hours
Module -3	Environmental Pollution: Definition, Causes, effects and control measures of: Water pollution, Air pollution, Noise pollution, Soil pollution, Marine pollution, Thermal pollution.	10Hours

Module -4	Environmental Issues : Climate change, Global warming, Acid rain, Ozone layer depletion, Water conservation, rain water harvesting, artificial recharge, watershed management, carbon trading, carbon foot print National Ambient Air quality Standards, Noise standards, Vehicle emission standards	7 Hours
Module -5	Drinking water standard (IS 10500), Water Quality Criteria Water treatment: Water sources and their quality, Lay out of a water treatment plant and working of each unit/principles of each process i.e. Screening, Aeration, Sedimentation, coagulation, flocculation, Filtration, Disinfection.	5 Hours
Module -6		
	Total	44 Hours

Text Books:

1 Environmental Engineering, G. Kiely, TMH, 2007

Reference Books:

- 1 Environmental Engineering, H.S. Peavy, D.R.Rowe and G. Tchobanoglous, McGraw Hill, 1985.
- 2 Introduction to Environmental Engineering, M. L. Davis and D. A Cornwell, McGraw Hill International,2005.

CO1	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.
	Make use of their knowledge to interpret the data by experimental analysis to provide valid conclusions
CO2	
CO3	Identify, formulate, review research literature and analyze complex Environmental Engineering problems using fundamentals of mathematics, sciences and engineering.
CO4	Develop solutions for Environmental Engineering problems and design system components and processes to meet the specified needs with appropriate consideration for the public health and safety.
CO5	Apply the knowledge of mathematics, Science and Engineering fundamentals for solution of problems of Environmental Engineering.
CO6	Assess societal, health, safety and legal issues by applying Environmental Engineering knowledge.

Type	Code	Database Management	L-T-P	Credits	Marks
PC	BTCS-P-PC-302	Systems Lab	0-0-3	1	200

Objectives	To expose to the field of Database.
Pre-	Fundamental computer knowledge that includes concepts of computer architecture,
Requisites	storage and hardware. Knowledge of MS Excel or other Tabular formats.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are planned
Pedagogy	to be interactive with focus on real-life problem-solving activities.

Lab	Name of the experiments	Hours
No:		
1	Execute DDL Commands	2 Hours
2	Execute DML Commands	2 Hours
3	Execute DCL and TCL Commands.	2 Hours
4	Create table using constraints.	2 Hours
5	Create views, partitions and locks for a particular DB	2 Hours
6	Execute joins (Inner and Outer) for 2 tables.	2 Hours
7	Write PL/SQL procedure for an application using cursors.	2 Hours
8	Write a PL/SQL block for transaction operations of a typical application using triggers.	2 Hours
9	Write a PL/SQL block for transaction operations of a typical application using package.	2 Hours
10	Write a PL/SQL procedure for an application using exception handling.	2 Hours

Text Books:

1

Database Management Systems Lab Manual, Department of CSE, GIFT, Bhubaneswar,

ISBN-13: 979-8846287921

CO1	Illustrate ER model and identify the roles and privileges of various users in a database.
CO2	Apply common SQL statements (including DDL, DML and DCL) to perform different operations.
CO3	Construct SQL Queries for various operations on database.
CO4	Interpret Embedded and Nested Queries.
CO5	Implement control statements in PL/SQL.
CO6	Apply triggers and assertions to stop malicious operations on tables.

Type	Code	Digital Logic Design Lab	L-T-P	Credits	Marks
OE	BTEC-P-OE-303		0-0-2	1	100

Objectives	 The objective is to analyze the designing process of combinational and sequential circuits, express arithmetic logic and shift micro-operations. To identify the addressing modes used in macro instructions To apply algorithms for arithmetic operations and implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to
	be interactive with different examples

Lab	Name of the experiments	
No:		
1	Investigate logic behavior of NOT, AND, OR, NAND, NOR, EX-OR, EXNOR gates.	2 Hours
2	Gate-level minimization: Two level and multi-level implementation of Boolean functions.	2 Hours
3	Implementation using universal gates.	2 Hours
4	Combinational Circuits: design, assemble and test: adders and subtractors, code converters	2 Hours
5	Design of multiplexers and de-multiplexer	2 Hours
6	Flip-Flop: assemble, test and investigate operation of SR, D & J-K flip-flops.	2 Hours
7	Shift Registers: Design and investigate the operation of all types of shift registers with Parallel load.	2 Hours
8	Study and design of Asynchronous Counters.	2 Hours
9	Study and design of synchronous Counters.	2 Hours
10	Clock-pulse generator: design, implement and test	2 Hours
11	Design and implement a circuit that multiplies 4-bit unsigned numbers to produce a 8-bitproduct.	2 Hours
12	VHDL simulation and implementation of adder.	2 Hours

Text Books:

1 Digital Electronics Circuit Lab Manual, Department of ECE, GIFT, Bhubaneswar, ISBN-13. 978-1648282270.

Type	Code	Object Oriented Programming	L-T-P	Credits	Marks
PC	BTCS-P-PC-305	with JAVA Lab	0-0-3	1	100

Objectives	To expose to the field of Problem Solving and Programing
Pre-Requisites	Knowledge of Mathematics in Secondary Education
Teaching	Regular Lab with use of ICT. Each session is planned to be interactive with focus on
Pedagogy	real-life problem-solving activities.

Lab No:	Name of the experiments	Hours
1	Introduction, compiling and executing java program	2 Hours
2	Programs related to different data types, variables, constants, operators	2 Hours
3	Conditional statements, control structures (while, do-while, for) Jumping statements	2 Hours
4	Array and multidimensional array	2 Hours
5	Object, class and Constructors	2 Hours
6	Inheritance, Interfaces and multiple inheritance	2 Hours
7	Polymorphism (method overloading and method overriding)	2 Hours
8	String Manipulations, Wrapper Class, Package.	2 Hours
9	Java threads (yield (), join (), sleep ()), Concept of Synchronization, Inter Thread Communication)	2 Hours
10	Exception handling, AWT, Event Handling.	2 Hours

Text Books:

Object Oriented Programming with JAVA Lab Manual, Department of CSE, GIFT, Bhubaneswar

CO1	Using object-oriented features, such as abstraction, inheritance, polymorphism etc. for writing
	effective programs.
CO2	Understand and compile code under java programming environment. (Using different data types, control structure and arrays)
CO3	Apply polymorphism and string concept to solve a problem in real world.
CO4	Develop own package and apply thread synchronization using multi-threading concept.
CO5	Recommend different error handling methods to handle the exception and make the java program more efficient.
CO6	Create API to design web based as well as stand-alone applications. (Using AWT and Swing)

Type	Code	SEMINAR-I	L-T-P	Credits	Marks
PS	BTCS-P-PS-307		0-0-3	1	100

Objectives	 To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
Pre-Requisites	Knowledge of Speaking with globally accepted language and subject analysis.
Teaching Regular seminar presentation and evaluation with record keeping. Pedagogy	

CO1	Outline the topics on modern technology; prepare implementation of the same as the presentation.
CO2	Understanding the technologies used by extracting the new things to be implemented by reviewing the journals/research papers.
CO3	Sketch the application of the technology for the use of the mankind.
CO4	Analyze and correlate the new technology with the subject of interest for further study.
CO5	Evaluate, plan and reframe the technology with the communication skills for a better explanation
CO6	Modify and design the concept into the realistic world.

Type	Code	Evaluation of Summer	L-T-P	Credits	Marks
SC	BTCS-P-SC-308	Internship-1	0-0-3	1	100

Objectives	 To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models. 	
Pre-Requisites	Knowledge of Speaking with globally accepted language, subject analysis, practical implementation.	
Teaching Pedagogy		

METHOD OF EVALUATION:

- 1. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a duration of about 8 to 10 minutes.
- 2. In a session of one period per week, 5 students are expected to present the seminar.
- 3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.
- 4. At the end of the semester, he / she can submit a report on his / her topic of seminar and marks are given based on the report.
- 5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 6. Evaluation is 100% internal.

CO1	State the functioning of organization and observe changes for self-improvement.
CO2	Explain how the internship placement site fits into a broader career field.
CO3	Apply appropriate workplace behaviors in a professional setting.
CO4	Solve real life challenges in the workplace by analyzing work environment and conditions, and
CO5	Evaluate the internship experience in terms of personal, educational and career needs.
CO6	Develop ideas for suitable startups to become successful entrepreneur.

Fourth Semester

Type	Code	Design and Analysis of	L-T-P	Credits	Marks
PC	BTCS-T-PC-401	Algorithms	3-0-1	3	150

Objectives	To Introduce various designing techniques and methods for algorithms Professional and Administration a
	 Performance analysis of Algorithms using asymptotic and empirical approaches Demonstrate a familiarity with major algorithms and data structures.
Pre-Requisites	Knowledge of Mathematics in Secondary Education, Data Structure and Exposer to any
	programming Language.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with focus on real-life problem -solving activities.

Module-#	Topics	Hours		
Module-1	Notion of Algorithm: Growth of functions, Recurrences: The Master method, The Substitution method, The Iteration method, Asymptotic Notations and Basic Efficiency Classes (Use of Big O, θ , etc.) in analysis of algorithms, Mathematical Analysis of Non-			
Module-2	Recursive and Recursive Algorithms. Divide and conquer approach: Disjoint Set and their Implementation, Divide and Conquer Paradigm of problem solving, Complexity analysis and understanding of Merge	7 Hours		
Module-3	Sort, Quick Sort. Heaps and Heap Sort. Dynamic Programming Paradigm: Floyd-War shall Algorithm, Optimal Binary Search trees, Matrix Chain Multiplication Problem, Longest Common Subsequence Problem, 0/1 Knapsack Problem, Maximum Network Flow Problem.			
Module-	Graph Algorithms and Greedy Techniques: DFS, BFS, Topological Sorting, Activity Selection Problem, Huffman Trees, Prim's Algorithm, Kruskal's Algorithm, Dijkstra's and Bellman Ford Algorithm, , Knapsack problem.			
Module-5	String Matching Algorithms: Naive string-matching algorithm, The Rabin- Karp Algorithm, string matching with Finite Automata, Knuth Morris Pratt string matching algorithm. Backtracking: n-Queen's problem, Hamiltonian Circuit problem, Subset-Sum problem, State Space Search Tree.	7Hours		
Module-6	Branch and Bound: Travelling Salesman Problem and its State Space Search Tree. Introduction to Computability: Polynomial-time verification, NP Completeness and Reducibility, NP-Complete problems (without proof). Approximation Algorithms: Vertex Cover Problem.			
	Total	40 Hours		

Te	xt Book
1	"Introduction to Algorithms", Thomas H.Cormen, Charles E.Leiserson, Ronald L. Rivest and Clifford Stein, Third Edition, PHI Learning Private Limited, 2012, ISBN-13. 978-0132316811.
Re	ference Books
1	"Data Structures and Algorithms" Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, Pearson Education, Reprint 2006, Data Structures and Algorithms, ISBN-13: 978-0201000238.
2	"The Art of Computer Programming" Donald E. Knuth, Volumes 1& 3 Pearson Education, 2009, ISBN-13: 978-0201896831.
4	"The Design and Analysis of Computer Algorithms" A.V. Aho, J. E. Hopcroft and J.D.Ullman, Pearson Education, ISBN-13. 978-0201000290.
5	"Algorithms, Data Structures, and Problem Solving", by Illustrated Edition Mark Allen Weiss, Addison-Wesley Publishing Company, ISBN-13

0805316667

CO1	Define the various algorithm analysis methods and the asymptotic time complexities of various statements with its correctness.
CO2	Explain important algorithmic design paradigms (divide-and-conquer, greedy method, dynamic-programming and Backtracking) and apply when an algorithmic design situation calls for it.
CO3	Demonstrate the major graph algorithms and Employ graphs to model engineering problems, when appropriate.
CO4	Apply different data structures for problem solving and pick an appropriate data structure for a design situation.
CO5	Compare the classes P, NP, and NP Complete and be able to prove that a certain problem is NP-Complete.
CO6	Familiarizing students with specific algorithms for a number of important computational problems design and development.

Type	Code	Computer Organization and Architecture	L-T-P	Credits	Marks
PC	BTCS-T-PC-402	7 ii cintectui c	3-0-1	3	150

Objectives	 To analyze the designing process of combinational and sequential circuits To express arithmetic logic and shift micro-operations, identify the addressing modes used in macro instructions To apply algorithms for arithmetic operations and implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with different examples

Module-#	Topics	Hours		
Module-1	Basic Organization of Computers: Classification Micro, Mini, Mainframe and Super Computer, Functional blocks of a computer, Bus Structure, Von- Neumann Architecture, Structure of IAS, CISC and RISC architectures and Computer Architecture.	05 Hours		
Module-2	Instruction Format: instruction set, Three Address, Two Address, One Address and Zero Address Instruction. Instruction execution cycle, Fetching and storing a word in Memory, Types of addressing modes.	05 Hours		
Module-3	Data representation: signed number representation, fixed and floating-point representations. Computer arithmetic — integer addition and subtraction multiplication -Booth multiplier, Fast multiplication, Division Algorithm, Floating Point Arithmetic Operation, Decimal Arithmetic Operation.			
Module - 4	Control Unit Operation: Hardware Control & Micro Programmed Control, Peripheral devices and their characteristics: Input-output subsystems, I/O organization, I/O device interface, interrupt driven and DMA Controller.			
Module - 5	Pipelining: Basic concepts of pipelining, Types of pipelining, representation of pipelining, throughput and speedup, pipeline hazards, Pipeline performance, Parallel Processors: Introduction to parallel processors and multi-core	08 Hours		
Module- 6	Memory Organization: Computers Memory System Overview, Characteristicsof Memory System, Memory Hierarchy, Main Memory types, Memory cell Operation. Cache Memory: Cache Principles, Elements of Cache Design, Cache Size, Cache Mapping function, Write policy, Introduction to flash memory.	08 Hours		
	Total	40 Hours		

Text Books:

1 Computer Organization – by V.CarlHamacher, Z.G.Vranesic, and S.G.Zaky, 5th Edition. McGraw Hill, ISBN-13: 978-8120332003.

Reference Books:

- 1 Computer System Architecture: Morris Mano, 3rd Edition, PHI, ISBN-13. 978-8126522842.
- 2 Computer Organization & Architecture William Stallings, 7th Edition, PHI, ISBN-13. 978-9332518704.
- 3 Computer Architecture and Organization: An Integrated Approach, Murdocca, Heuring Willey India, ISBN-13. 978-1259028564.
- 4 Computer Organization& Design, (3rd Edition) by D.A.Patterson & J.L.Hennessy Morgan Kaufmann Publishers (Elseviers), ISBN-13: 978-8120335110.
- 5 Computer Architecture and Organization, by John P. Hayes, 3rd Edition, Mc Graw Hill International Editions, ISBN-13. 978-1259028564.
- 6 Computer Architecture: Parhami, Oxford University Press, . ISBN-13: 978-9381068311.

CO1	Identify Basic Organization of Computers.
CO2	Identify the addressing modes used in macro instructions.
CO3	Apply algorithms for arithmetic operations and implementation for ALU design.
CO4	Develop micro code for typical instructions in symbolic form.
CO5	Develop the pipeline and its performance.
CO6	Identify Characteristics of Memory System.

Type	Code	Digital Signal Processing	L-T-P	Credits	Marks
OE	BTEC-T-OE-403		3-0-1	3	150

Objectives	 To study the design techniques for FIR and IIR digital filters. To study the finite word length effects in signal processing. To study the properties of random signal, Multirate digital signal processing and about QMF filters. 	
Pre-Requisites	Knowledge of Physics and Mathematics in Secondary Education.	
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are plann be interactive with focus on problem solving activities.	

Module-#	Topic	Hours		
Module-1	Signals: Introduction, Classification: continuous/discrete-time signals, Representation of Discrete –time signals, Elementary Discrete –time signals, Classification of Discrete –time signals, Operation on Discrete –time signals. Systems: Introduction, Classification of Discrete –time systems: Static/Dynamic, Causal/Non-causal, Linear/Non-linear, Time-variant/time-invariant, FIR/IIR, Stable/Unstable; Representation of arbitrary sequence using impulse function, Impulse response, Convolution Sum, Properties of convolution, Correlation of two sequences.			
Module-2	The Z-Transform: Introduction, Definition of Z-Transform, Z-Transform and ROC of finite duration sequences, Z-Transform and ROC of infinite duration sequences, ROC of two-sided sequence, Stability and ROC, Properties of ROC,			
Module-3	Properties of the Z-transform, The System Function, Poles and Zeroes of a System function, Stability Criterion. Inverse Z-Transform: Long Division Method, Partial fraction expansion method			
Module-4	The Discrete Fourier Transform: Introduction to DFT & IDFT, properties of DFT, Comparison between circular convolution and linear convolution, Circular convolution of two sequences,			
Module-5	Filtering long duration sequences (overlap add and overlap save), Efficient computation of DFT: Fast Fourier Transform (FFT) Algorithm (Radix-2 DIT and Radix-2 DIF).	7 Hours		
Module-6	Digital filters: Introduction (IIR/FIR filter), Realization of IIR filters: Direct form I, Direct form II, Signal flow graph, Transposed Structure, Cascade form, parallel form, Lattice structure, Lattice-Ladder Structure. Realization of FIR filters: Direct-Form Structure, Cascade-Form Structure, Linear phase, Lattice	8 Hours		
	Total	40 Hours		

Text Books:

- 1 J.G. Proakis and D.G. Manolakis, Digital Signal Processing: Principles, Algorithms and applications, 4thEdition, Prentice Hall India, 2007.
- 2 A.V.Oppenheim, A.S.Willsky, and S.H.Nawab, Signals and Systems, 2nd Edition, Prentice Hall India, 1992.
- 3 | S.K.Mitra, Digital Signal Processing: A Computer Based Approach, 4thEdition, Mc Graw Hill, 2013

Reference Books:

- 1 L.R.Rabiner and B.Gold, Theory and Application of Digital Signal Processing, 2nd Edition, Prentice Hall India, 1992
- 2 J.R.Johnson, Introduction to Digital Signal Processing, 2nd Edition, Prentice Hall India, 1992.
- 3 A.N.Kani, Digital Signal Processing, 2nd Edition, McGraw Hill Education, 2017.
- 4 Computer Architecture and Organization, by John P. Hayes, 3rd Edition, Mc Graw Hill International Editions
- 5 P.R. Babu, Digital Signal Processing, 4th Edition, Sci tech Publication, 2011.

CO1	Describe different types of signals, systems and their representation.
CO2	Explain the stability & Causality of LTI system.
CO3	Analyze various type of discrete time signal and system using z-transform.
CO4	Analyze discrete signal & System using DFT technique.
CO5	Realize different structure of FIR & IIR discrete time systems.
CO6	Design FIR & IIR filter using various technique.

Type	Code	Engineering Economics and	L-T-P	Credits	Marks
HS	BTBS-T-HS-404	Costing	3-0-1	3	150

Objectives	 Account for the time value of money in economic analyses. Make economic decisions using present worth, annual worth, future worth, and capitalized cost.
Pre-Requisites	Economic decisions involving engineering alternatives; annual cost, present worth, rate of return, and benefit-to-cost; before and after tax replacement economy; organizational financing; break-even charts; unit and minimum-cost public sector studies. Open only to junior and senior engineering students.
Teaching Pedagogy	Formal face-to-face lectures Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material. Small periodic quizzes, to enable you to assess your understanding of the concepts.

Module-#	Topics	Hours
Module-1	Engineering Economics- Nature, Scope, Basic problems of an economy, Micro Economics and Macro Economics. Demand - Meaning of demand, Demand function, Law of Demand and its exceptions, Determinants of demand, Elasticity of demand & Demand amp; its measurement (Simple numerical problems to be solved), Demand Forecasting - Meaning Supply Meaning of supply, Law of supply and its exception, Determinants of supply, Elasticity of supply, Determination of market equilibrium (Simple numerical problems to be solved).	10 Hours
Module-2	Production - Production function, Laws of returns: Law of variable proportion, Law of returns to scale Cost and Revenue Concepts - Total Costs, Fixed cost, Variable cost, Total revenue, Average revenue and Marginal revenue, Cost-Output Relationships in the Short Run, and Cost-Output Relationships in the Long Run, Analysis of cost minimization.	08 Hours
Module-3	Market - Basic understanding of different market structures, Determination of equilibrium price under perfect competition (Simple numerical problems to be solved), Break Even Analysis-linear approach (Simple numerical problems to be solved).	07 Hours
Module-4	Time Value of Money- Interest - Simple and compound, nominal and effective rate of interest, Cash flow diagrams, Principles of economic equivalence. Evaluation of Engineering Projects- Present worth method, Future worth method, Annual worth method, Internal rate of return method, Cost benefit analysis for public projects.	06 Hours
Module-5	Depreciation- Depreciation of capital assert, Causes of depreciation, Methods of calculating depreciation - Straight line method, Declining balance method, SOYD method, After tax comparison of project.	04 Hours
Module-6	Inflation-Meaning of inflation, types, causes, measures to control inflation. National Income-Definition, Concepts of national income, Method of measuring national income. Banking - Commercial bank, Functions of commercial bank, Central bank, Functions of Central Bank.	05 Hours
	Total	40 Hours

Te	xt Books:
1	Principles of Economics, Deviga Vengedasalam and Karaunagaran Madhavan, Oxford, ISBN-13 978-8120341678
2	Riggs, Bedworth and Randhwa, "Engineering Economics", McGraw Hill Education India, ISBN-13: 978-8120341678.
Re	ference Books:
1	C. S. Park, Contemporary Engineering Economics, 6th Edition, Pearson Education, 2015, ISBN-13 8120342095
2	Engineering Economy , William G.Sullivan, Elin M.Wicks, C. Patric Koelling, Pearson, ISBN-13 8120341678
3	"Engineering Economics", R.Paneer Seelvan, PHI, ISBN-13 8120341678
4	"Principles of Micro Economics", Ahuja, H.L., S.Chand & Company Ltd, ISBN-13. 978-8120341678.
5	"Macro Economic Theory" Jhingan, M.L, Macro Economic Theory.

CO1	Remembering: Define the basic concept of micro and macroeconomics, engineering economics and their application in engineering economy.
CO2	Understanding: Evaluate numerically the effects of changes in demand and supply on price determination of products and services.
CO3	Analyze: the macroeconomic environment and financial systems of the country and its impact on business, society and enterprise.
CO4	Develop: the ability to account for time value of money using engineering economy factors and formulas.
CO5	Apply: knowledge of mathematics, economics and engineering principles to solve engineering problems and to analyze decision alternatives in engineering projects considering upon depreciation, taxes and inflation.
CO6	Understanding: Inflation and Banking.

Type	Code	PROGRAMMING	L-T-P	Credits	Marks
PC	BTCS-T-PC-405	WITH	3-0-1	3	150
		PYTHON			

Objectives	 Python is next generation multi-purpose programming language, that allows different users to create applications of various domains. Students will be able to learn primary fundamentals of python programming and potential of python is to achieve modern computing requirements. 		
Pre-Requisites	Object oriented concepts, Programming fundamentals		
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are		
Pedagogy	planned to be interactive with different examples		

Module-#	Topics			
Module-1	Introduction: History of Python, Need of Python Programming, Running Python Scripts, Variables, Assignment, Keywords, Input-Output, Indentation. Types, Operators and Expressions: Types - Integers, Strings, Booleans; Operators-Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators, Expressions and order of evaluations	07 Hours		
Module-2	Control Flow- if, if-elif-else, for, while, break, continue, pass. Data structure: Lists - Operations, Slicing, Tuples, Sets, Dictionaries, Sequences. Comprehensions.			
Module-3	Functions - Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments, Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful Functions (Function Returning Values), Scope of the Variables in a Function - Global and Local Variables.			
Module-4	Object Oriented Dragramming OOD in Duthon, Classes and objects, constructor			
Module-5	Python File Handling: Open files, read from a file and write to a file. Exception handling: Errors and exceptions in Python, Try Except, Built-in exceptions, user defined exceptions	06 Hours		
Module-6	Brief Tour of the Standard Library - Dates and Times, Matplotlib, NumPy, Pandas. Modules: Creating modules, importing modules	08 Hours		
	Total	40 Hours		

Tex	Text Book				
1	Python Programming: A Modern Approach, Vamsi Kurama, Pearson, ISBN-13. 978-1284175554.				
Ref	erence Books				
1	Core Python Programming, W. Chun, Pearson, ISBN-13. 978-9386052308.				
2	Introduction to Python, Kenneth A. Lambert, Cengage, ISBN-13. 978-0132269933.				
3	John V Guttag, —Introduction to Computation and Programming Using Python ", Revised and expanded Edition, MIT Press, 2013, ISBN 13: 9780262525008.				
4	Kenneth A. Lambert, —Fundamentals of Python: First Programs, CENGAGE Learning, 2012, ISBN-13: 978-8131529034.				
5	Charles Dierbach, —Introduction to Computer Science using Python: A Computational Problem-solving Focus, Wiley India Edition, 2013, ISBN-13.978-8126556014				
6	Learning Python, Mark Lutz, Orielly, ISBN-13. 978-1449355739.				

CO1	Interpret the fundamental Python syntax and semantics and be fluent in the use of Python control flow
	statements.
CO2	Express proficiency in the handling of strings and functions
CO3	Determine the methods to create and manipulate Python programs by utilizing the data structures like lists, dictionaries, tuples and sets.
CO4	Develop micro code for typical instructions in symbolic form.
CO5	Identify the commonly used operations involving file systems
CO6	Articulate the Object-Oriented Programming concepts such as encapsulation, inheritance and polymorphism as used in Python.

Type	Code	NPTEL	L-T-P	Credit s	Mark s
OO	BTCS-T-OO-406		1-0-0	2	_

Objectives	The objective is to facilitate the competitiveness of Indian industry in the global markets through improving the quality of engineering education by providing high quality learning material available to students by the Indian Institutes of Technology (IIT) and Technical Teacher Training Institutes (TTTI).
Pre-Requisites	Knowledge of basic skill in every subject
Teaching	Regular classroom lectures provided by different course providers online or virtual
Pedagogy	mode.

List of Courses provided:

To be notified by the head of the department before the commencement of Fourth semester.

Type	Code	EMPLOYMENT	L-T-P	Credits	Marks
SC	BTSC-T-SC-407	ENHANCEMENT	1-0-0	1	100
		TRAINING - C			

Objectives	Defining the concepts of Indian tradition Knowledge
	2. Understanding the importance of roots of knowledge system
	3. Implementing the traditional knowledge to the day to day life
	4. Distinguishing the types of traditional knowledge
	5. Evaluating the ideas and teaching s of TK
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with focus on real-life problem -solving activities.

Module- #	Topics	Hours
Module-1	Introduction to Traditional Knowledge (Definition TK its Nature, characteristics and scope)	4 hrs
Module-2	Protection and significance of Traditional knowledge (Significance of TK Protection , Value of TK , role of Govt.to harness TK)	3 hrs
Module-3	Legal Frame work and TK (Forest Dwellers Forest right act 2001, 2002, 2006.)	3 hrs
Module-4	Traditional knowledge and Intellectual property (Systems & Legal concepts for the protection of traditional knowledge)	4 hrs
Module-5	Traditional knowledge and Engineering (Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge)	3 hrs
Module-6	Importance of conservation and sustainable development of Management of Biodiversity (Traditional societies dependence on environment, Food security of the country and protection of TK)	3 hrs
	Total	20 Hours

Tex	Text Book		
1	Quantitative aptitude ,R S Aggarwal , ISBN-13: 978-0199488780		
2	2 Quantitative Aptitude for CAT, Arun Sharma, ISBN-13. 978-9355321626.		
Ref	Reference Books		
1	1 Fast Track Objective Arithmetic , Arihant Publications , ISBN-13: 9789312149836		

CO1	Identify the concept of Traditional knowledge and its importance.
CO2	2. Explain the need and importance of protecting traditional knowledge.
CO3	3. Illustrate the various enactments related to the protection of traditional knowledge.
CO4	4. Interpret the concepts of Intellectual property to protect the traditional knowledge.
CO5	5. Explain the importance of Traditional knowledge in Agriculture and Medicine.
CO6	Identify Characteristics of Memory System.

Type	Code	Design and Analysis of Algorithms	L-T-P	Credits	Marks
PC	BTCS-P-PC-401	Lab	3-0-1	3	100

Objectives	Analyze the asymptotic performance of algorithms.	
	Write rigorous correctness proofs for algorithms.	
	 Demonstrate a familiarity with major algorithms and data structures. 	
Pre-Requisites	Knowledge of Mathematics in Secondary Education, Data Structure and Exposer to any programming Language.	
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.	

Lab No:	Name of the experiments	Hours
1	Implementation of different searching algorithms.	2 Hours
2	Implementation of different sorting algorithms.	2 Hours
3	Problem solving using Divide and Conquer technique.	2 Hours
4	Problem solving using Dynamic Programming technique.	2 Hours
5	Problem solving using Greedy technique.	2 Hours
6	Implementation of Graph Traversal algorithms – Breadth-First-Search (BFS) and Depth-First-Search (DFS).	2 Hours
7	Implementation of Minimum Spanning Tree construction algorithms – Kruskal and Prim.	2 Hours
8	Problem solving for the Shortest Path problems.	2 Hours
9	Problem solving using Backtracking technique.	2 Hours
10	Problem solving using Branch and Bound technique.	2 Hours
11	Implementation of different String-Matching algorithms.	2 Hours
12	Problem solving using disjoint-set data structure operations.	2 Hours
13	Problem solving using Approximation algorithms.	2 Hours

Text Books:

Design and Analysis of Algorithms Lab Manual, Department of CSE, GIFT, Bhubaneswar, ISBN-13. 978-1983074165.

CO1	Analyse and compare running times of algorithms using asymptotic analysis.
CO2	To demonstrate understanding of algorithmic design paradigms such as divide-and-conquer, dynamic-programming, greedy, backtracking etc.
CO3	Apply the algorithms design techniques to solve greedy problem.
CO4	Ability to analyse and implement shortest path problem.
CO5	Demonstrate the efficiency of algorithms using polynomial problem.
CO6	Implement minimum spanning tree and analyse time complexity.

Type	Code	Computer Organization and	L-T-P	Credits	Marks
PC	BTCS-P-PC-402	Architecture Lab	0-0-3	1	100

Objectives	Discuss the basic concepts and structure of computers. Understand concepts of register transfer logic and arithmetic operations. Explain different types of addressing modes and memory organization.
Pre-Requisites	Knowledge of fundamentals of Computer and C programming Language.
Teaching Pedagogy	Regular Lab with use of ICT. Each session is planned to be interactive with focus on real-life problem-solving activities.

Lab No:	Name of the experiments	Hours
1	Identification of different components of a PC.	2 Hours
2	Assembling and Disassembling of a PC.	2 Hours
3	Study of Motherboard and its Installation.	2 Hours
4	Study of the functions of SMPS trainer kit.	2 Hours
5	Study of different types of printer trainer kit.	2 Hours
6	Study of Assembly language programs.	2 Hours
7	Study of different troubleshooting of CPU using CPU trainer kit.	2 Hours
8	Familiarization of different types of bytes addressing instruction using 8085/8086 simulators.	2 Hours
9	Write a C/C++ program to perform signed bit multiplication using Booth's Algorithm.	2 Hours
10	Write a C/C++ program for IEEE-754 floating point representation and perform Addition/Subtraction.	2 Hours

Text Books:

Computer Organization and Architecture Lab Manual, Department of CSE, GIFT, Bhubaneswar, ISBN-13: 978-8120332003

CO1	Identifying the various components of PC.
CO2	Discuss about the different troubleshooting of a dot matrix printer using LX 1050+Printer Trainer Module.
CO3	Demonstrate the functions of SMPS using SMPS Trainer Kit.
CO4	Illustrate different troubleshooting of CPU using CPU Trainer Module.
CO5	Compare the assembly language program of 8085 and 8086architecture.
CO6	To have the knowledge about Logic gate

Type	Code	Programming With	L-T-P	Credits	Marks
PC	BTCS-P-PC-405	Python Lab	0-0-3	1	100

Objectives	 To convert an algorithm into a Python program. To construct Python programs with control structures. To structure a Python Program as a set of functions.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with different examples

Lab No:	Name of the experiments	Hours
1	Python control statement	2 Hours
2	Program on data type using Python.	2 Hours
3	Program on matrix operation using Python	2 Hours
4	Program on Function using Python.	2 Hours
5	Program on String operation in python.	2 Hours
6	Program on object-oriented concept using python.	2 Hours
7	File handling in Python.	2 Hours
8	Program related to uses of Python modules (NumPy, Pandas)	2 Hours
9	Python programming using Matplotlib	2 Hours
10	Python programming for linear regression	2 Hours

Text Books:

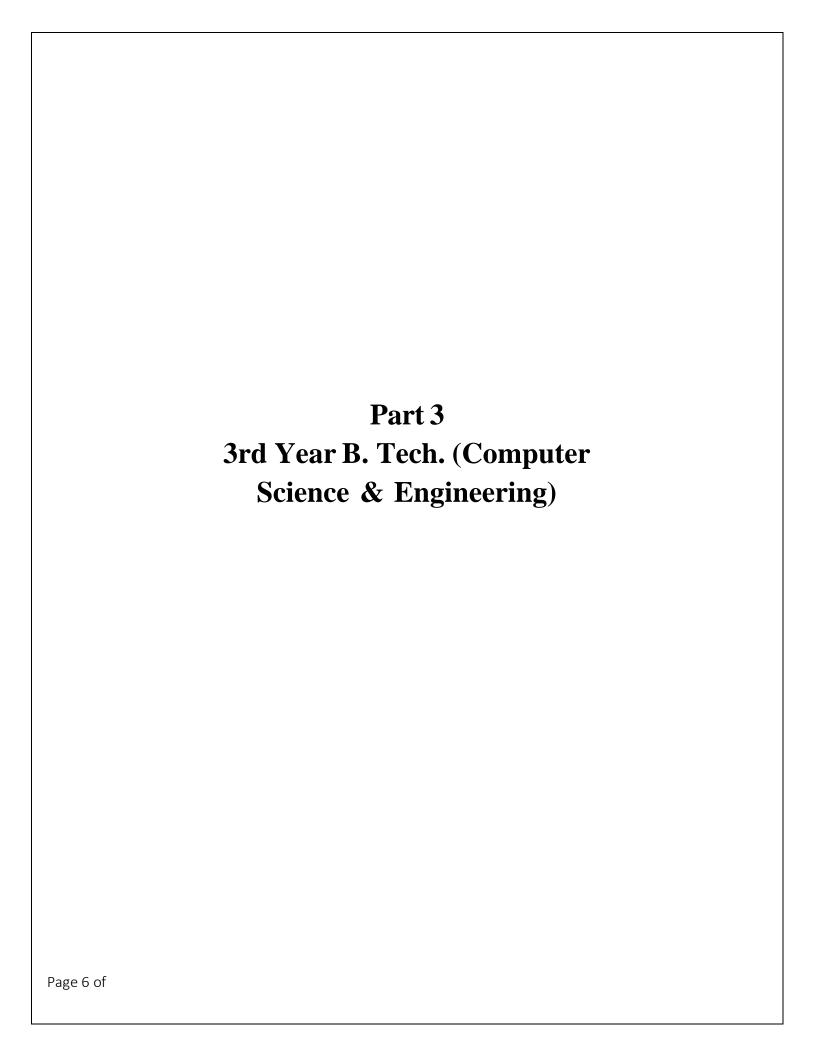
PYTHON Lab Manual, Department of CSE, GIFT, Bhubaneswar, ISBN-13: 978-1491957660

Course Outcomes:

CO1	Understand the basic concept of Script language.
CO2	Demonstrating the control statement in python
CO3	Experiment on different datatypes in python.
CO4	Ability to explore python especially the object-oriented concepts, and the built in objects of
CO5	Implementation of Python Modules.
CO6	Ability to Create practical and contemporary applications on Machine learning.

Type	Code	Project-III	L-T-P	Credit s	Mark s
PS	BTCS-P-PS-408		3-0-1	2	150

Objectives	The objective is to analyze the designing process of combinational and sequential circuits, express arithmetic logic and shift micro-operations, identify the addressing modes used in macro instructions, apply algorithms for arithmetic operations and implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with different examples.


Projects using C Programing

- 1) Unit Converter
- 2) Customer Billing System in a shopping mall
- 3) Banking Management System
- 4) University Grading System
- 5) Bus Ticket Reservation System
- 6) Home Automation System
- 7) Digital Wall Clock
- 8) Book Support Automation
- 9) Lab Management System
- 10) Nursery Management System

Arduino based Project

- 1) Obstacle detection using Arduino
- 2) Controlling 4 LEDs to make different patterns
- 3) Voice Activation System
- 4) Use Humidity Sensor using Arduino
- 5) Arduino Based Color Detector
- 6) Touch Dimmer Switch Circuit Using Arduino
- 7) Wireless Door Bell
- 8) Arduino Traffic Light Controller
- 9) Frequency Counter Using Arduino
- 10) Arduino 4-Digit 7-Segment LED Display
- 11) Arduino based Digital Thermometer
- 12) Arduino Light Sensor
- 13) Portable Ultrasonic Range Meter
- 14) Security Alarm System Using Arduino
- 15) Arduino Alarm Clock
- 16) Interfacing LCD with Arduino

CO1	Identify Basic Organization of Computers.
CO2	Identify the addressing modes used in macro instructions.
CO3	Apply algorithms for arithmetic operations and implementation for ALU design.
CO4	Develop micro code for typical instructions in symbolic form.
CO5	Develop the pipeline and its performance.
CO6	Identify Characteristics of Memory System.

Contents

Third Year B.Tech

Curriculum Structure

B. Tech(CSE-AI) (5thSemester&6thSemester)

Item	Page No
Curriculum Structure	2
Evaluation Process	8
Detailed Syllabus	
Theory	Page No
Artificial Intelligence	10
Software Engineering	12
Operating Systems	14
Formal Language and Automata Theory	16
Digital image Processing	18
Employment Enhancement Training - D	20
Essence of Indian knowledge and Tradition - II	22
Optimization Engineering	30
Data Analytics	32
Computer Network	34
Machine Learning	36
Mobile Computing	38
NPTEL Course	40
Employment Enhancement Training - E	41
Universal Human Values	43
Practical	
Artificial Intelligence Lab	24
Software Engineering Lab	25
Operating Systems Lab	26
Seminar-II	27
Evaluation of Summer Internship -II	28
Data Analytics Lab	45
Computer Network Lab	46
Machine Learning Lab	48
Project-IV	50

Type	Code		L-T-P	Credits	Marks
PC	BTCA-T-PC-501	ARTIFICIAL INTELLIGENCE	3-0-0	3	200

Objectives	 Understand the basic concepts of Artificial Intelligence and applications of search algorithms for problem solving. Learn about advance search algorithms and knowledge representation. Study different learning techniques and get awareness about Ethics and Safety in AI.
Pre-Requisites	Basic knowledge of algorithm and mathematics.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module-1	Introduction –The Foundations of Artificial Intelligence, INTELLIGENT AGENTS – Agents and Environments, Good Behavior: The Concept of Rationality, the Nature of Environments, the Structure of Agents.	07 Hours
Module-2	Solving problems by search - 1: Problem-Solving Agents, formulating problems, Searching for Solutions, Uninformed Search Strategies, Breadth-first search, Depth-first search, Searching with Partial Information.	08 Hours
Module-3	Solving problems by search – 2: Informed (Heuristic) Search Strategies, Greedy best-first search, A* Search, CSP, Means- End-Analysis.	08 Hours
	Advanced Search: Constructing Search Trees, Stochastic Search, Minimax Search, Alpha-Beta Pruning Basic knowledge.	
Module-4	Knowledge Representation and Reasoning: Propositional logic, Predicate logic, First order logic, Inference in first order logic, Clause form conversion, Resolution. Chaining- concept, forward chaining and backward chaining, Utility theory and Probabilistic reasoning, Hidden Markov model, Bayesian Networks.	08 Hours
Module-5	Learning: Forms of Learning, Supervised Learning, Learning Decision Trees Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.	08 Hours
Module-6	Ethics and Safety in AI: Limits of AI, Ethics of AI – Surveillance, security and privacy, Fairness and bias, Trust and transparency, AI safety.	06 Hours
	Total	45 Hours

Text Book

- 1. Elaine Rich, Kevin Knight, & Shivashankar B Nair, Artificial Intelligence, McGraw Hill,3rd ed.,2017 ISBN-13 9780070087705
- 2. Stuart Russell, Peter Norvig, Artificial Intelligence -A Modern Approach, 2/e, Pearson, 2003, ISBN 9780134610993

Reference Books

- Nils J Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publications, 2000, ISBN-13978-1558604674
- 2 Introduction to Artificial Intelligence & Expert Systems, Dan W Patterson, PHI.,2010, ISBN-13: 978-8120307773
- 3 Introduction to Artificial Intelligence & Expert Systems, Dan W Patterson, PHI.,2010, *ISBN*-13: 978-8120307773
- S Kaushik, Artificial Intelligence, Cengage Learning, 1st ed.2011, ISBN-13 978-8131510995

CO.1	Understand the fundamental concepts, theories, and principles of Artificial Intelligence to architect intelligent agents.
CO.2	Acquire knowledge about different search techniques of AI applications.
CO.3	Develop practical skills to identify suitable solutions using heuristic functions, optimization algorithms and search algorithms.
CO.4	Learn techniques for logic, reasoning & knowledge representation in AI.
CO.5	Learn the basics of Machine Learning as a subfield of Artificial Intelligence area.
CO.6	Apply AI applications to solve and analyze real world problems.

Type	Code	SOFTWARE ENGINEERING	L-T-P	Credits	Marks
PC	BTCA-T-PC-502		3-0-0	3	200

Objectives	1. An ability to work in one or more significant application domains		
	2. Demonstrate an understanding of and apply current theories, models, and techniques		
	that provide a basis for the software lifecycle		
	3. Demonstrate an ability to use the techniques and tools necessary for engineering practice		
Pre-Requisites	To identify different software development models		
Teaching			
Pedagogy	To apply software engineering knowledge in real-world problem solving		

Module-#	Topics	Hours	
Module-1	Software Process Models : Software Product, Software crisis, Handling complexity through Abstraction and Decomposition, Overview of software development activities, Process Models, Classical waterfall model, iterative waterfall model, prototyping mode, evolutionary model, spiral model, RAD model, Agile models: Extreme Programming, and Scrum.	10 Hours	
Module-2	Software Requirements Engineering: Requirement Gathering and Analysis, Functional and Non-functional requirements, Software Requirement Specification (SRS), Decision tables and trees.	05 Hours	
Module-3	Structured Analysis & Design: Overview of design process, High-level and detailed design, Cohesion and coupling, Modularity and layering, Function—Oriented software design: Structured Analysis using DFD Structured Design using Structure Chart, Basic concepts of Object Oriented Analysis & Design. User interface design.	06 Hours	
Module-4	Coding and Software Testing Techniques: Coding, Code Review, documentation. Testing: - Unit testing, Black-box Testing, White-box testing, Cyclomatic complexity measure, coverage analysis, mutation testing, Debugging techniques, Integration testing, System testing.	07 Hours	
Module-5	Product metrics: Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.	05 Hours	
Module-6	Maintenance: Basic concepts in software reliability, reliability measures, reliability growth modelling, Quality SEI CMM, Characteristics of software maintenance, software reverse engineering, software reuse.	07 Hours	
Total			

Text Book

1. Rajib Mall(2014)Fundamentals of Software Engineering, Prentice-Hall of India Pvt. Ltd, ISBN-978-81-203-4898-1

Reference Books

- Craig Larman, "Applying UML and Patterns" Third edition, Pearson Education, 2005,ISBN-13 978-0131489066
 - Stephen Schach, "Software Engineering" Seventh edition, McGraw-Hill, 2007, ISBN-13: 978-
 - 2 | 0070647770
 - Ivar Jacobson, Grandy Booch, James Rumbaugh, "The Unified Software Development Process",
 - Pearson Education, 1999, ISBN 0-8053-0604-8
 - 4 Alistair Cockburn, "Agile Software Development" Second edition, Pearson Education, 2007, ISBN 0-321-482751

CO.1	To learn object-oriented (OO) analysis and design using UML and other techniques.
CO.2	To acquire knowledge how to OO languages support abstraction and polymorphism.
CO.3	To develop an agile software process, with multiple iterations, design patterns, test-driven development & pair programming.
CO.4	To improve communications skills in the contact of software development. Students will present project ideas, analyses, designs, and prototypes.
CO.5	Ability to abstract object-based views for generic software systems.
CO.6	To explore specialized topics in OO software.

Type	Code	OPERATING SYSTEMS	L-T-P	Credits	Marks
PC	BTCA-T-PC-50	3	3-0-0	3	200
Obje	ectives	 Students will learn how Operating System is To make aware of different types of Operating To learn different process scheduling algorithachieve better performance of a computer sy 	ng System a hms and syn stem	nd their servi	ces.
Pre-Requisites B		Basic concept of computer science and algorithm			
1		Regular classroom lectures with use of ICT as and o be interactive with focus on problem solving a		ired, sessions	s are planned

Module-#	Topics	Hours
Module-1	INTRODUCTION TO OPERATING SYSTEM: Fundamentals of OS, Batch Systems, Multiprogramming and Time-Sharing systems. Personal Computer Systems, Parallel Systems, Distributed Systems and Real time Systems. Operating System Structures: Operating System Services, System components, Protection, Operating System Services, system calls	6 Hours
Module-2	PROCESS MANAGEMENT: Process Concept, Process Scheduling, Operation on Processes, inter-process communication, Examples of IPC Systems, Multithreading Models, Threading Issues, Process Scheduling Basic concepts, scheduling criteria, scheduling algorithms.	5 Hours
Module -3	PROCESS COORDINATION: Synchronization: The Critical section problem, Peterson's solution, Synchronization hardware, Semaphores, Classical problems of synchronization, Monitors. Deadlocks: System model, Deadlock Characterization Methods for Handling Deadlocks, Deadlock Prevention, Deadlock avoidance, Deadlock Detection, recovery from Deadlock.	7 Hours
Module -4	MEMORY MANAGEMENT: Memory Management strategies, Logical versus Physical Address space, swapping, contiguous Allocation, Paging, Segmentation. Virtual Memory: Background, Demand paging, performance of Demand paging, Page Replacement, Page Replacement Algorithms. Allocation of frames, Thrashing, Demand Segmentation.	7 Hours
Module -5	STORAGE MANAGEMENT: File System Concept, Access Methods, File System Structure, File System Structure, File System Implementation, Directory implementation, Efficiency and Performance, Recovery, Overview of Mass Storage Structure, Disk Structure, Disk Scheduling, Disk Management, Swap-Space Management, I/O System Overview, I/O Hardware, Application I/O Interface, Kernel I/O Subsystem, Transforming I/O Request to Hardware Operation. CASE STUDIES: The LINUX System, Windows XP,	10 Hours
Module -6	Distributed Systems: Distributed operating systems –Distributed file systems –Distributed Synchronization	5 Hours
	Total	40 Hours

Te	Text Books:				
1	Operating System Concepts – Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 8 th edition, Wiley-India, 2009, ISBN-13 978-0470233993				
Re	eference Books:				
1	Operating Systems – Flynn, McHoes, Cengage Learning, ISBN-13. 978-1285096551				
2	Operating Systems – Pabitra Pal Choudhury, PHI, ISBN: 9788120338111				
3	Operating Systems – William Stallings, Prentice Hall, ISBN-13: 978-9332518803				
4	Operating Systems – H.M. Deitel, P. J. Deitel, D. R. Choffnes, 3 rd Edition, Pearson, ISBN-13. 978-0131828278				
5	Modern Operating Systems – Andrew S. Tanenbaum, 3 rd Edition, PHI, ISBN-13 978-8120339040				
6	Operating Systems: A Spiral Approach – Elmasri, Carrick, Levine, TMH Edition, ISBN-13 978-0072449815				

CO.1	Define Operating system, process, critical section, semaphore, monitor, thread, deadlock, virtual memory, file, protection and security.
CO.2	Explain Operating system functions and services, process control block and process cycle, Describe characteristics for deadlock handling strategies, paging, segmentation, different file systems.
CO.3	Solve problems on CPU scheduling, dead lock avoidance, paging and disk scheduling.
CO.4	Analyze different operating system structures and different CPU scheduling algorithms, file structures.
CO.5	Compare paging and segmentation, page replacement algorithms, disk scheduling mechanisms.
CO.6	Prepare a list of functionality requirement specification of an operating system for a real world scenario.

Type	Code		FORMAL LANGUAGES &	L-T-P	Credits	Marks
PC	BTCA-T-PC	C -504	AUTOMATA THEORY	3-0-0	3	200
Objectives			To introduce concepts in automata theory and the To identify different formal language classes and To design grammars and recognizers for different formal language.	their relation	onships.	
Pre-Requisites		Basic	knowledge of discrete mathematics is required.			
_		_	ar classroom lectures with use of ICT as required; settive with focus on problem solving activities.	sessions are	planned to	be

Module-#	Topics	Hours
Module-1	Introduction: Automata theory, Computability theory, Complexity theory, Mathematical notations & terminology, Alphabet, String, Languages & operations on strings; Finite Automata (Deterministic): Formal definition, Transition function, Extended transition function, Language of DFA, Design of DFA; Finite Automata (Non-deterministic): Formal definition, Language of NFA, Equivalence of DFA & NFA; NFA with Epsilon Transition: Eliminating & transitions from NFA, Conversion from Epsilon-NFA to DFA, Minimization of DFA.	7 Hours
Module-2	Moore Machines, Mealy Machines; Regular Expressions: Operators and their precedence, Building Regular expressions, DFA to Regular Expressions, Regular Expressions to DFA, Arden's theorem, Pumping Lemma for Regular Languages, Closure properties of Regular languages.	7 Hours
Module-3	Introduction to Grammars: Definition, Derivation of string, Regular grammars; Context Free Grammars: Definition, Derivation of string, Language of CFG, Parse Tree, Ambiguity in grammar, Elimination of ambiguity.	6 Hours
Module-4	Normal forms of CFG: Chomsky and Greibach Normal forms, Converting CFG to CNF & GNF, Closure Properties of context free languages. Push Down Automata: Basic Model, Components, Moves of a PDA, ID Of a PDA, Design of a PDA.	7 Hours
Module-5	Turing Machines: Model, Components, ID of TM, Design of a TM, Variation of TM model, Recursively Enumerable Languages, Universal Turing Machine and undesirable problems.	5 Hours
Module-6	Church Turing hypothesis, Recursive and recursively enumerable sets, Chomsky's hierarchy of languages. Undecidability of Post correspondence problem, Linear Bounded Automata and Ackermann's function, Turing computable functions, Cantor and Godel numbering; NP Completeness: P and NP, NP complete and NP Hard problems	8 Hours
	Total	40 Hours

Text Book				
	J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory, Languages and			
1	Computation, Pearson Education, 2007, ISBN 978-1292039053			
Ref	erence Books			
1	M. Sipser, Introduction to the Theory of Computation, Cengage Learning, 2012, ISBN: 9788131525296			
	J. C. Martin, Introduction to Languages and the Theory of Computation, Tata McGraw-			
2	Hill, 2010, ISBN-0071198547			
	K. L. P. Mishra, and N. Chandrasekaran, Theory of Computer Science: Automata, Languages and			
3	Computation, , PHI, 2012, ISBN-10 9788120329683			

CO.1	Develop and implement mathematical models with DFA, NFA for regular languages and grammar for real life applications.
CO.2	Design and implement grammar and PDA for context free languages and demonstrate their Properties.
CO.3	Construct Turing machines for context sensitive and un-restricted languages
CO.4	Describe the Chomsky hierarchy of Formal Languages and Grammar.
CO.5	Illustrate the relevance of the Church-Turing thesis, explain the concept of decidability.
CO.6	Recursive innumerability, and classify a given language to the P, NP or NPC complexity classes

Type	Code	DIGITAL IMAGE	L-T-P	Credits	Marks
PE	BTCA-T-PE-502	PROCESSING	3-0-0	3	200

Objectives	 To study the image fundamentals and mathematical transforms necessary for image processing. To study the image enhancement techniques To study image restoration procedures. To study the image compression procedures.
Pre-Requisites	Basic knowledge of discrete mathematics is required.
Teaching Pedagogy	Regular classroom lectures with use of ICT as required; sessions are planned to be interactive with focus on problem solving activities.

Module	Topics	Hours
Module-1	Introduction: Digital Image fundamentals: Image sensing and acquisition, Image sampling and quantization, relationship between pixels, Intensity transformations and spatial filtering, some basic intensity transformation functions, Histogram processing, spatial filters for smoothing and sharpening (8Hours
Module-2	Filtering in the Frequency Domain: preliminary concepts, 2D DFT and its properties, basic filtering in the frequency domain, image smoothing and sharpening	5Hours
Module-3	(Chapt: 4 of Text book 1) Image Restoration and Reconstruction: Image restoration/degradation model, noise models, restoration in the presence of noise only, estimating the degradation function	5Hours
Module-4	Color Image Processing: color models, Color transformation Wavelets	7Hours
Module-5	Multi-resolution Processing: multiresolution expansions, wavelet transforms in one and two dimension	7Hours
Module-6	Image Compression: Fundamentals, Error-free compression: variable length coding, LZW coding. Lossy compression: lossy predictive coding, Morphological Image Processing: Erosion and Dilation, opening and closing	8 Hours
	Total	40Hours

Text Boo	Text Books:		
1	R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd Edition, Pearson Education, ISBN-13. 978-0131687288		
2	R C Gonzalez, Woods and Eddins, Digital Image Processing using Matlab, 2nd Edition, Tata McGraw Hill, ISBN-13. 978-0070702622		
Reference Books:			

1	S.Sridhar, Digital Image Processing, Oxford University Press, 2011, ISBN-13 978-0199459353			
2	A. K. Jain, Fundamentals of Digital Image Processing, 2nd Edition, Prentice Hall of India, 2004, ISBN-13. 978-9332551916			
3	S. Jayaraman, S. Esakkirajan, and T. Veerakumar, Digital Image Processing, 2nd Edition, McGraw-Hill Education, 2013, ISBN-13. 978-9389811926			
Online Re	Online Resources:			
1	https://nptel.ac.in/courses/117105079/: by Prof. P. K. Biswas, IIT Kharagpur			
2	https://nptel.ac.in/courses/117105135/: by Prof. P. K. Biswas, IIT Kharagpur			
3	https://nptel.ac.in/courses/106105032/: by Dr. G. Harit, IIT Kharagpur			
4	https://nptel.ac.in/courses/117/104/117104069/: by Prof. S. Gupta, IIT Kanpur			

CO1	To understand the digital image fundamentals
CO2	To understand the concept of image transformation algorithms/techniques
CO3	To understand the basic concepts compression algorithms/techniques
CO4	To understand the basic concepts of image enhancement and segmentation algorithms/techniques
CO5	To understand the basic concepts of image restoration and denoising algorithms/techniques
CO6	To understand the basic concepts of binary and color image processing

Type	Code	EMPLOYMENT	L-T-P	Credits	Marks
AE	BTCA-T-AE-501	ENHANCEMENT TRAINING - D	2-0-0	1	100

Objectives	1. To develop analytical abilities
	2. To develop communication skills
	3. To introduce the students to skills necessary for getting, keeping and being successful
	in a profession.
	4. To expose the students to leadership and team-building skills.
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module-1	Basics, Structure of C program, Tokens, Control Statements, Arrays and Strings. Functions and Pointers, Structures, unions and File Handling.	04 Hours
Module-2	Java oops, continues java oops and string.	03 Hours
Module -3	Java exception handling, java inner classes, java conversions	03 Hours
Module -4	Database Basics, Architecture, Codds Rule, Relational Algebra (Theory and SQL) Joins (Theory and SQL), ER Diagram.	03 Hours
Module -5	Dependencies: Functional Dependency, Partial Dependency, Transitive Dependency, Multi Valued Dependency Normalization: 1 NF, 2 NF,3 NF & BCNF, 4&5 NF	03 Hours
Module-6	Understanding of HTML, Overview of CSS, JavaScript, JavaScript Methods, DOM Model and Form Handling.	04 Hours
	Total	20 Hours

Text Book			
1	Programming in ASCI C, 8th Edition by E Balaguruswamy,ISBN-10-935316513X		
2	Core Java Volume I- Fundamentals ,Cay S. Horstmann, Gary Cornell Pearson India Education Services Pvt. Ltd., Eleventh Edition		
Reference Books			

1	C Programming in easy steps, 5th Edition, Mike McGrath
	The Java Language Specification, J. Gosling, Bill Joy, Jr. Steele, Guy L., Gilad Bracha, Alex
2	Buckley, Guy L. Steele Jr.
3	Data Base Management System, Raghu Ramakrishnan and Johannes Gehrke
	Learning Web Design: A Beginner's Guide to HTML, CSS, JavaScript, and Web Graphics,5th
4	Edition, Jennifer Robbins
	Database Systems: The Complete Book, Hector Garcia-Molina, Jeff Ullman, and Jennifer
	Widom
5	
	HTML & CSS: The Complete Reference, 5 th Edition ,Thomas A. Powell,ISBN: 978-0-07-174170-
6	5

CO.1	Learn all the basic skill on c programming.
CO.2	Develop problem solving and programming skills using OOP concepts.
CO.3	Apply the concept of Exception Handling, inner classes, conversions.
CO.4	Understand data models to design a database.
CO.5	Apply normalization on database for eliminating redundancy.
CO.6	Understanding the internet Architecture and html, CSS and JavaScript.

Type	Code	ESSENCE OF INDIAN	L-T-P	Credits	Marks
MC	BTCA-T-MC-501	KNOWLEDGE AND TRADITION - II	0-0-0	0	100

Objectives	Defining the concepts of Indian tradition Knowledge
	2. Understanding the importance of roots of knowledge system
	3. Implementing the traditional knowledge to the day to day life
	4. Distinguishing the types of traditional knowledge
	5. Evaluating the ideas and teaching s of TK
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions are
Pedagogy	planned to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module-1	Introduction to Traditional Knowledge (Definition TK its Nature, characteristics and scope)	04 Hours
Module-2	Protection and significance of Traditional knowledge (Significance of TK Protection , Value of TK , role of Govt.to harness TK)	03 Hours
Module -3	Legal Frame work and TK(Forest Dwellers Forest right act 2001, 2002, 2006.)	03 Hours
Module -4	Traditional knowledge and Intellectual property (Systems & Legal concepts for the protection of traditional knowledge)	04 Hours
Module -5	Traditional knowledge and Engineering (Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge)	03 Hour
Module -6	Importance of conservation and sustainable development of environment Management of Biodiversity (Traditional societies dependence on environment, Food security of the country and protection of TK)	03 Hours
	Total	20 Hours

Text B	Text Book					
1	Indian Philosophy by S. Radhakrishnan, ISBN-13: 978-0195638204					
2	The Cultural Heritage of India edited by Kapila Vatsyayan, ISBN-13: 978-8173050545					
Refere	Reference Books					
1	Indian Art and Culture by Nitin Singhania, ISBN-13: 978-9384761548					

CO.1	Ability to understand, connect up and explain basics of Indian Traditional knowledge Modern scientific perspective.
CO.2	Identify the concept of Traditional knowledge and its importance.
CO.3	Explain the need and importance of protecting traditional knowledge.
CO.4	Illustrate the various enactments related to the protection of traditional knowledge.
CO.5	Interpret the concepts of Intellectual property to protect the traditional knowledge.
CO.6	Explain the importance of Traditional knowledge in Agriculture and Medicine.

Type	Code	ARTIFICIAL INTELLIGENCE	L-T-P	Credits	Marks
PC	BTCA-P-PC-501	LAB	0-0-2	1	100
Objectives		 Understand the basic concepts of Artific search algorithms for problem solving. Learn about advance search algorithms Understand and apply different learning Ethics and Safety in AI. 	and knowle	edge represen	tation.
Pı	Pre-Requisites A basic knowledge of algorithm, mathematics.				
Teac	ching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.			

Lab No:	Name of the experiments	Hours
1	Write a program to implement BFS and DFS	2 Hours
2	Write a program to implement Greedy BFS	2 Hours
3	Write a program to implement A* Search Algorithm	2 Hours
4	Write a program to implement Min-Max Algorithm	2 Hours
5	Study of PROLOG(Pre-Requisite)	2 Hours
6	Write a program to implement simple facts and Queries	2 Hours
7	Write a program to implement simple arithmetic	2 Hours
8	Write a program to solve Tower of Hanoi	2 Hours
9	Write a program to solve 8 Puzzle problems	2 Hours
10	Write a program to solve Monkey banana problem	2 Hours
11	Write a program for Water jug problem	2 Hours

Text I	Text Books:			
1	Artificial Intelligence Lab Manual, Department of CSE, GIFT, Bhubaneswar			

CO.1	Apply the good programming skills to formulate the solutions for computational problems
CO.2	Design and develop solutions for informed and uninformed search problems in AI.
CO.3	Demonstrate the submission of small problems using prolog programming and implement various AI algorithms.
CO.4	Demonstrate and enrich knowledge to select and apply AI tools to synthesize information and develop models within constraints of application area.
CO.5	Evaluate the performance by developing a minor project in multidisciplinary areas to demonstrate team work through reports and presentation.
CO.6	Design and develop an Expert System that operates in a realistic problem domain and communicate effectively in a team or individual and prepare reports.

Type	Code	SOFTWARE ENGINEERING LAB	L-T-P	Credits	Marks
PC	BTCA-P-PC-502	SOF I WARE ENGINEERING LAD	0-0-2	1	100

Lab No:	Name of the experiments	Hours
1	Develop requirements specification for a given problem (The requirements specification should include both functional and non-functional requirements.	2 Hours
2	Develop DFD Model (Level 0, Level 1 DFD and data dictionary) of the sample problem (Use of a CASE tool required)	
3	Develop structured design for the DFD model developed	2 Hours
4	Develop UML Use case model for a problem (Use of a CASE tool any of Rational rose, Argo UML, or Visual Paradigm etc. is required)	2 Hours
5	Develop Sequence Diagrams using visual paradigm / lucidchart/ SmartDraw.	2 Hours
6	Develop Class Diagrams using visual paradigm / lucidchart/ SmartDraw.	2 Hours
7	Develop code for the developed class model using Java.	2 Hours
8	Use open source testing tool like JUnit.	2 Hours
9	Develop Object Diagrams using visual paradigm / lucidchart/ SmartDraw .	2 Hours
10	Create an ER diagram for the assigned project.	2 Hours

Text Book

- 1. Pressman, R.S. (2010) Software Engineering: A Practitioner's Approach. 7th Edition, McGraw Hill, New York, ISBN-13 978-0071267823
- 2. Rajib Mall(2014)Fundamentals of Software Engineering, Prentice-Hall of India Pvt. Ltd, ISBN-978-81-203-4898-1
- 3. Bernd Bruegge, Alan H Dutoit, "Object-Oriented Software Engineering" Second edition, Pearson Education, 2004, ISBN-13: 978-0136061250

CO.1	Outline the SRS for different functional and non-functional requirements.
CO.2	Understand the software engineering methodologies involved in the phases for software development.
	Solve the DFD of various models.
CO.3	
CO.4	Ability to develop product start-up and implementing software process models in software engineering methods.
CO.5	Select the various testing tools for software mechanisms.
CO.6	Build project management tool like MS Project or Gantt Project.

Type	Code		OPERATING SYSTEMS LAB	L-T-P	Credits	Marks	
PC I	BTCA-P-PC-503		OFERATING STSTEMS LAB	0-0-2	1	100	
2.		2. 3.	Students will learn how Operating System To make aware of different types of Opera To learn different process scheduling algo achieve better performance of a computer	ating Systen	n and their se	rvices.	s to
Pre-R	Requisites	equisites Basic concept of computer science and algorithm.					
Teach Pedag	_	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on problem solving activities.					

Lab No:	Name of the experiments	Hours		
1	Basic UNIX Commands.			
2	Linux Administrative commands.			
3	UNIX Shell Programming.	2 Hours		
4	Programs on UNIX System calls.	2 Hours		
5	Write a program to create a process. Explain the process synchronization using producer consumer process.	2 Hours		
6	Simulation of CPU Scheduling Algorithms. (FCFS, RR, SJF, Priority, Multilevel Queuing)	2 Hours		
7	Write a program to simulate First Fit, Best Fit and Worst Fit algorithm.	2 Hours		
8	Simulation of Banker's Algorithm for Deadlock Avoidance, Prevention	2 Hours		
9	Program for FIFO, LRU, and OPTIMAL page replacement algorithm.	2 Hours		
10	Write a program to simulate DISK scheduling.	2 Hours		

Text l	Text Books:	
1	Operating Systems Lab Manual, Department of CSE, GIFT, Bhubaneswar	

CO.1	Remember and use of various Linux commands and UNIX system calls.
CO.2	Interpret the commands using different parameters.
CO.3	Demonstrate the submission of small problems using shell programming and implement various OS algorithms.
CO.4	Analyze the shared memory and message queue communication among processes.
CO.5	Evaluate their performance of different page replacement algorithms with respect to page fault through simulation.
CO.6	Build one program to check whether there will be deadlock or not for any given real-world problem.

Type	Code	SEMINAR-II	L-T-P	Credits	Marks
PS	BTCA-P-PS-501		0-0-2	1	100

Objectives	 To encourage the students to study advanced engineering developments To prepare and present technical reports. To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
Pre-Requisites	Knowledge of Speaking with globally accepted language and subject analysis.
Teaching Pedagogy	Regular seminar presentation and evaluation with record keeping.

CO.1	Outline the topics on modern technology; prepare implementation of the same as the presentation.
CO.2	Understanding the technologies used by extracting the new things to be implemented by reviewing the journals/research papers.
CO.3	Sketch the application of the technology for the use of the mankind.
CO.4	Analyze and correlate the new technology with the subject of interest for further study.
CO.5	Evaluate, plan and reframe the technology with the communication skills for a better explanation and presentation.
CO.6	Modify and design the concept into the realistic world.

Type	Code	EVALUATION OF SUMMER	L-T-P	Credits	Marks
PS	BTCA-P-PS-502	INTERNSHIP-II	0-0-2	1	100

Objectives	To encourage the students to study advanced engineering developments
	2. To prepare and present technical reports.
	 To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.
Pre-Requisites	Knowledge of Speaking with globally accepted language, subject analysis, practical implementation.
Teaching Pedagogy	Regular contact with interns and evaluation with record keeping.

METHOD OF EVALUATION:

- 1. During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for a duration of about 8 to 10 minutes.
- 2. In a session of one period per week, 5 students are expected to present the seminar.
- 3. Each student is expected to present at least twice during the semester and the student is evaluated based on that.
- 4. At the end of the semester, he / she should submit a report on his / her topic of seminar and marks are given based on the report.
- 5. A Faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.

CO.1	State the functioning of organization and observe changes for self-improvement.
CO.2	Explain how the internship placement site fits into a broader career field.
CO.3	Apply appropriate workplace behaviors in a professional setting.
CO.4	Solve real life challenges in the workplace by analyzing work environment and conditions, and
CO.5	Evaluate the internship experience in terms of personal, educational and career needs.
CO.6	Develop ideas for suitable startups to become successful entrepreneur.

Sixth Semester

Type	Code	OPTIMIZATION ENGINEERING	L-T-P	Credits	Marks
BS	BTCA-P-BS-601	OF TIVITZATION ENGINEERING	3-1-0	4	200

Objectives	1. Inculcate modeling skills necessary to describe and formulate optimization
	problems in design and manufacturing
	2. Familiarize with the working principle of optimization algorithms used to solve
	linear and non-linear problems
	3. Train the students to solve optimization problems using software tools
Pre-Requisites	Knowledge of Mathematics in Secondary Education, Data Structure and Exposer to
	any programming Language.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions
Pedagogy	are planned to be interactive with focus on real-life problem-solving
	activities.

Module-#	Topics	Hours
Module-1	Idea of engineering optimization problems, modeling of problems and principle of modeling, Linear Programming: Formulation of LPP, Graphical solution,	6 Hours
Module-2	Simplex method, Big-M method, Dual simplex method, Duality theory.	8 Hours
Module-3	Transportation problems: Finding an initial basic feasible solution by Northwest Corner rule, Least Cost rule, Vogel's approximation method, Degeneracy, Optimality test, MODI method, Assignment problems: Hungarian method for solution of Assignment problems. Travelling Salesman problem.	10 Hours
Module-4	Non-linear programming: Introduction to non-linear programming. Unconstraint optimization: Fibonacci and Golden Section Search method	6 Hours
Module-5	Non-linear programming problem: Constrained optimization with equality constraint: Lagrange multiplier method. Constrained optimization with inequality constraint: Kuhn-Tucker condition.	6 Hours
Module-6	Inventory Theory: General characteristics, Deterministic Inventory models: EOQ model with constant rate of demand, different rates of demand, EPQ Model.	9 Hours
	Total	45 Hours

Boo	Books		
1	Operation Research: J K Sharma Macmillan India Ltd, ISBN-10 1403931518		
2	Operation Research, Prabhakar Pai ,Oxford University Press, ISBN-10 0198075472		
3	Operations Research, P.K.Gupta, D.S.Hira, S.Chand and Company Ltd, 2014, ISBN-13: 978-1212121844		
4	Operations Research, H.A.Taha, A.M.Natarajan, P.Balasubramanie, A.Tamilarasi, Pearson Education, Eighth Edition, ISBN 9780134444017		
5	Engineering Optimization, S S Rao, New Age International Pvt Ltd, 2003, ISBN-13. 978-9395161800		
6	Engineering Optimization, A.Ravindran, K.M.Ragsdell, G.V.Reklaitis, Wiley India Pvt. Ltd, Second edition, ISBN 978-0-470-18352-6		
7	Operations Research, F.S.Hiller, G.J.Lieberman, Tata McGraw Hill, Eighth Edition, 2005, ISBN-10 0070600929		

Digital Learning Resource:

Course Name:

Foundations of Optimization https://nptel.ac.in/courses/111/104/111104071/ Dr. Joydeep Dutta, IIT Kanpur Course Link:

Course Instructor:

CO.1	Apply basic concepts of mathematics to formulate an optimization problem.
CO.2	Analyze and appreciate variety of performance measures for various optimization problems.
CO.3	To understand importance of optimization in different sectors.
CO.4	To understand the theory of optimization methods and algorithms developed for solving various types of optimization problems.
CO.5	To develop and promote research interest in applying optimization techniques in problems of Engineering and Technology.
CO.6	To apply the mathematical results and numerical techniques of optimization theory to concrete Engineering problems.

Type	Code		COMDUTED NETWORK	L-T-P	Credits	Marks
PC	BTCA-T-PC	C-602	COMPUTER NETWORK		3	200
Objectives 2. Fanetw 3. Integratives 4. Al		2. Fam networ 3. Intro entry A 4. Allo	d an understanding of the fundamental conciliarize the student with the basic taxonomy king area. Oduce the student to advanced networking conditional courses in computer networking. We the student to gain expertise in some spectand maintenance of individual networks	and termino	logy of the co	ent for
Pre-Requisites			mental computer knowledge that includes co pt of Network and Graphs	ncepts of co	mputer archit	ecture,
		_	ar classroom lectures with use of ICT as and interactive with focus on real life problem solutions.	•		re planned

Module - #	Topics	Hours
Module - 1	 Introduction: Uses of Computer Networks, Communication Types, Serial and Parallel Data Transmission; Principles of Network Design: Evolution of Computer, Networks, Topologies, Network Models (ISO-OSI, TCP/IP), Network Architecture. 	07 Hours
Module - 2	Physical Layer: Transmission Medium: Guided Media, Unguided Media, Switching: Circuit Switching, Packet Switching, Message Switching; Data Link Layer: Framing; Elementary Data Link Protocols: Simplest Protocol, Stop and Wait Protocol; Sliding Window Protocol: Stop and Wait Automatic Repeat Request (ARQ); Go Back N-ARQ, Selective ARQ;	07 Hours
Module - 3	Multiple Access Protocols: Pure ALOHA, Slotted Aloha, CSMA, CSMA/CD,CSMA/CA; Controlled Access Protocol: Reservation, Pooling, Token passing; Error Detection and Correction: Standard Ethernet, MAC Sublayer	07 Hours
Module - 4	Network Layer: Network Layer Design issues; Networks-routing algorithms: optimality principle, shortest path, flooding, Distance Vector Routing, Link State Routing, Path Vector Routing, Hierarchical Routing; IP addresses: IPv4, IPv6; Network devices: Repeater, Hubs, Bridges, Switches, Routers, Gateways.	07 Hours
Module - 5	Transport Layer : Transport Service; Transport Layer Features; Process to Process Delivery : TCP, TCP Connection Establishment, 3-Way Handshaking, SYN Flooding Attack, Connection Termination, Flow Control and TCP Sliding Window, Nagel's Rule, TCP Congestion Control, UDP	06 Hours
Module - 6	Application Layer : DNS, Remote Logging, File transfer, Multimedia, Ziff's law, HTTP(S), SMTP, RPC, gRPC	06 Hours
	Total	40 Hours

Te	Text Books:				
1	Data Communications and Networking, Behrouz A. Forouzan, Tata McGraw-Hill ISBN-13 978-0070584082				
	Computer Networks, A.S. Tannenbum, Imprint of Pearson				
2	ISBN-13 978-9332518742				
Re	eference Books:				
1	Computer Networks A System Approach, Larry L, Peterson ISBN-13: 978-0128182000				
2	Understanding communications and Networks, 3rd Edition, W. A. Shay, Cengage Learning.				
3	Computer Networking: A Top-Down Approach Featuring the Internet, James F. Kurose, K. W.Ross, 3rd Edition, Pearson Education.				

CO.1	To develop an understanding of modern network architectures from a design and performance perspective.
CO.2	Illustrate the conceptual design for Physical Layer and Transmission Media.
CO.3	Formulate the different Data Link Layer Protocols
CO.4	Understand and Apply Error Detection and Correction Methods of Data Link Layer.
CO.5	Summarize different Network Routing Algorithms
CO.6	Explain various Transport Layer Processes.

Type	Code	COMPILER DESIGN	L-T-P	Credits	Marks
PC	BTCA-T-PC-601	COMITEER DESIGN	3-0-0	3	200

Objectives	1. To inculcate knowledge of parser by parsing LL parser and LR parser
	To demonstrate intermediate code using technique of syntax directed translation
	3. To Illustrate the various optimization techniques for designing various optimizing compilers
Pre-Requisites	Knowledge of basic computer and mathematics.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with different examples

Module-#	Topics	Hours
Module-1	Introduction to compilers – Analysis of the source, program, Phases of a compiler, Grouping of phases, compiler writing tools – bootstrapping, Lexical Analysis: The role of Lexical Analyzer, Input Buffering, Specification of Tokens using Regular Expressions, Review of Finite Automata, Recognition of Tokens.	07 Hours
Module-2	Syntax Analysis: Review of Context free Grammars – Derivation trees and parse trees, Ambiguity. Top-Down Parsing: Recursive Decent Parsing, Predictive parsing, LL(1) Grammars	06 Hours
Module-3	Bottom – Up Parsing:- Shift Reduce parsing- Operator precedence parsing (Concept Only) LR Parsing – Constructing SLR parsing tables, Constructing Canonical LR tables and Constructing LALR parsing tables	06 Hours
Module-4	Syntax directed translation: Syntax directed definitions, Bottom- up evaluation of S- attributed definitions, L- attributed definitions, Top- down translation, Bottom-up evaluation of inherited attributes. Type Checking: Type systems, Specification of a simple type checker.	06 Hours
Module-5	Run-Time Environments: Source Language issues, Storage organization, Storage- allocation strategies. Intermediate Code Generation (ICG): Intermediate languages – Graphical representations, Three-Address Code, Quadruples, Triples. Assignment statements, Boolean expressions.	07 Hours
Module-6	Code Optimization: Principal sources of optimization, Optimization of Basic blocks Code generation: Issues in the design of a code Generator. The target machine, A simple code generator.	08 Hours
	Total	40 Hours

Te	Text Books:			
1	Compilers–Principles, Techniques and Tools, A.V.Aho, M.S.Lam, R.Sethi, J.D.Ullman, Pearson, ISBN 0-201-10088-6			
2	Compiler Design, K.Muneeswaran, OxfordUniversityPress, ISBN 10: 0198066643			
Re	eference Books:			
1	Compiler Design, S.Chattopadhyay, PHI, ISBN-13 978-8120327252			
2	Modern Compiler Design, D.Galles, Pearson Education, ISBN 8131709418			
3	Advanced Compiler Design & Implementation, S.S. Muchnick, MORGAN KAUFMANN.			
4	Compiler Design in C,A.I. Holub, PHI			

CO.1	Define various phases of compiler, code optimization techniques and machine code generation.
CO.2	Classify top down & bottom-up parsing.
CO.3	Demonstrate DAG for intermediate code generation.
CO.4	Analyze the knowledge of parser by parsing LL parser and LR parser.
CO.5	Implementing code optimization by removing redundant and unreachable codes.
CO.6	Analyze & Design Run time environments and Syntax directed translations.

Type	Code	NEURAL NETWORK AND	L-T-P	Credits	Marks
PC	BTCA-T-P	C-603 MACHINE INTELLIGENCE	3-0-0	3	200
Objectives		 To understand the basic theory underlying To be able to formulate machine learning predifferent applications. To understand a range of machine learning strengths and weaknesses 	roblems corr	responding to	
Pre-Requisites		Knowledge of mathematics and artificial intelligen			
Teaching Pedagogy		Formal face-to-face lectures Tutorials, which allow and allow time for students to resolve problems in		-	solving

material. Small periodic quizzes, to enable you to assess your understanding of the

Detailed Syllabus

concepts.

Module-#	Topics	Hours
Module - 1	Introduction: Machine learning, Terminologies in machine learning, Types of machine learning: supervised, unsupervised, semi-supervised learning. Overview of supervised learning,	05 Hours
Module - 2	Discriminative Models: Least Square Regression, Gradient Descent Algorithm, Univariate and Multivariate Linear Regression, Multiple linear regression, Logistic regression	05 Hours
Module - 3	Decision Trees: Basic Terminology, Tree Construction, Splitting Criteria and Tree Pruning, Case Study of Classification Problem and regression problem Random Forests: Concept of Random Forests, Case Study of Classification Problem and regression problem using random forest	08 Hours
Module - 4	Generative model for discrete data (Bayesian concept learning, Naive Bayes classifier), SVM for Classification- - Large margin classifiers, Nonlinear SVM, SMO algorithm, kernel functions, Reproducing Kernels, SVM for regression, K-Nearest Neighbors (KNN)	08 Hours
Module - 5	Unsupervised Learning: K-Means Clustering, Hierarchical Clustering, Principal Component Analysis (PCA), Gaussian Mixture Models	07 Hours
Module - 6	Model Evaluation and Tuning: Cross-Validation, k-Fold Cross-Validation, Hyperparameter Tuning, Grid Search, Random Search, Model Evaluation Metrics, Confusion Matrix, ROC and AUC	07 Hours
	Total	40 Hours

Te	Text Books:				
1	E. Alpaydin, Introduction to Machine Learning, 2nd Edition, Prentice Hall of India, 2010, <i>ISBN</i> -13: 978-8120341609				
2	An Introduction To Statistical Learning With Applications In Python, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor, Springer International Publishing, 2023, ISBN 3031387481				
Re	eference Books:				
1	Y. G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning with Applications in R, 2nd Edition, Springer, 2013, <i>ISBN</i> -13. 978-1461471370				
2	T. M. Mitchell, Machine Learning, 1st Edition, McGrow-Hill Education, 2013, <i>ISBN</i> -13. 978-1259096952				
3	C. M. Bishop, Pattern Recognition and Machine Learning, 1st Edition, Springer, 2006, <i>ISBN</i> -13. 978-1493938438				

- **Digital Learning Resources:**1. https://nptel.ac.in/courses/106/106/106106139/: by Dr. B. Ravindran, IIT Madras 2. https://nptel.ac.in/courses/106/105/106105152/: by Prof. S. Sarkar, IIT Kharagpur

CO.1	To introduce concept of Machine Learning.
CO.2	To identify different machine learning algorithms.
CO.3	To determine most appropriate model in a specific context using model selection techniques.
CO.4	To implement the basic concepts of classification, regression, boosting methods.
CO.5	To learn the basic concepts of SVM algorithm, SVM for both classification and regression.
CO.6	To apply the machine learning algorithm to solve various real life problems.

Type	Code	
OE	BTCS-T-OE-601	

GREEN TECHNOLOGY

L-T-P	Credits	Marks
3-0-0	3	200

Objectives	 Define global warming and explain its effects on India. Illustrate global carbon control methods and compare power sources. Assess green city measures; develop comprehensive green technology plan.
Pre-Requisites	Knowledge of basic concept of Science and Engineering.
Pedagogy	Formal face-to-face lectures Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material. Small periodic quizzes, to enable you to assess your understanding of the concepts.

Module-#	Topics	Hours
Module-1	Global warming and its effect	06 Hours
	Definition of global warming, Carbon Accumulation, Long Half-Life, Heating	
	Potential, The Global Carbon Emission Situation and its effect in India, Kyoto and	
	Other Protocols and its view in India,	
Module-2	Climate change	06 Hours
	Effect of climate change and its impact. Steps taken to Control Carbon Emissions	
	universally, Use of Promotional and Punitive Mechanisms for Reducing Carbon	
	in Atmosphere, Developing Countrywide Adaptive Measures for Safety of Local	
	People, Approach for Carbon Reduction, NAPCC, Green India Mission	
Module-3	Control of Carbon Emissions: Technical approach	03 Hours
	Control of Carbon Emissions and Accumulation, Procedure to develop own	
	Priorities and Business Opportunities in India for control of carbon emissions and	
	accumulation, Needs a Mix of Green and Traditional Power Sources in India, A	
	Logical Approach for Carbon Reduction, Need in India More Forests, Less	
	Deforestation and payment rates procedure for controlling carbon emissions and	
	its Promotional Mechanisms at India. Green Technologies for Energy	
	Production:- Various Technologies Available for Energy Production, Cost	
	Comparison of a Few Typical Systems for Power Generation, Sources of Energy	
	Production Already in Use, Alternative Methods Ready for Use.	
Module-4	Green Technologies for Personal and local Application	09 Hours
	Measures to be taken for Green city, Carbon Emission Reduction at Personal	
	Level, Carbon Emission Reduction at Local Authority Level, Carbon Emissions	
	from Imports. Promotion of 'Green' Buildings, Guidelines, The Energy	
	Conservation Building Code (ECBC), Green Hotels and Hospitals,	
Module-5	Green Technologies for Citywide Application	06 Hours
	Green Technologies for Transport, Green Roads, Ports and Harbours, Industries,	
	Carbon, Carbon Emission Reduction at Citywide Level. Carbon Emissions from	
	a Few Selected Industries in India, Area Re-Development Projects, 'Green'	

	Infrastructure for Municipal Services, Bringing up Indian Villages, Green Services for Crematoria, Spreading Message to all Stakeholders.	
Module-6		
	Total	40 Hours

Text Book	Text Books:								
1	Green Technologies Soli J. Arceivala McGraw Hill 2017								
Reference	Reference Books:								
1	Green Technologies and Environmental Sustainability Ritu Singh, Sanjeev Kumar Springer 2017								

CO1	Define global warming and identify key concepts such as carbon accumulation, long half-life, and heating potential.
	Explain the global carbon emission situation and its specific effects on India, including the implications of international protocols like the Kyoto Protocal.
CO3	Illustrate steps taken universally to control carbon emissions, utilizing promotional and punitive mechanisms to reduce atmospheric carbon.
CO4	Compare green and traditional power sources in India, evaluating the benefits and challenges of each for effective carbon reduction.
	Assess the effectiveness of measures for creating green cities and reducing carbon emissions at personal, local authority, and citywide levels.
CO6	Develop a comprehensive plan for promoting green technologies and infrastructure in India, including energy production, transport, and municipal services.

Туре	Code	NPTEL	L-T-P	Credits	Marks
OO	BTCS-T-OO-601		0-0-0	2	100

Objectives	The objective is to facilitate the competitiveness of Indian industry in the global markets through improving the quality of engineering education by providing high quality learning material available to students by the Indian Institutes of Technology (IIT) and Technical Teacher Training Institutes (TTTI).
Pre-Requisites	Knowledge of basic skill in every subject
Teaching Pedagogy	Regular classroom lectures provided by different course providers online or virtual mode.

List of Courses provided:

To	be	notified	by t	he	head	of	the o	department	bet	ore	the	commencement	of	Sixth	semester.
----	----	----------	------	----	------	----	-------	------------	-----	-----	-----	--------------	----	-------	-----------

Type	Code	EMDLOWNENT ENHANCEMENT	L-T-P	Credits	Marks
SC	BTCS-T-SC-601	EMPLOYMENT ENHANCEMENT TRAINING - E	1-0-0	1	100

Objectives	 Equip students with the necessary competencies, including communication, problem-solving, teamwork, and adaptability, to enhance their employability. Offer training and education tailored to the needs and demands of various industries, ensuring that students gain relevant expertise. Prepare students for the workforce by imparting practical knowledge,
Pre-Requisites	professional etiquette, and the ability to navigate the job market effectively. To help students practiced and understand the various company pattern tests.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module-1	Types of Machine Learning: Supervised, Unsupervised, and Reinforcement Learning, Real-world Applications of Machine Learning, Data and Features, Training, Validation, and Test Sets, Overfitting vs. Under fitting	04 Hours
Module-2	Mathematics for Machine Learning: Vectors, Matrices, and Operations, Basic Concepts of Probability and Statistics, Calculus: Derivatives and Gradients	03 Hours
Module-3	Simple Linear Regression, Multiple Linear Regression, K-Nearest Neighbors (KNN). Support Vector Machines (SVM)	03 Hours
Module-4	JDBC: JDBC introduction and jdbc connectivity, connectivity with MySQL connectivity with oracle, prepared Statement of curd operation.	04 Hours
Module-5	SERVLET: introduction of servlet and creating servlet and life cycle of servlet. Creating generic servlet and http servlet welcome file list and request dispatcher, set attribute and get attribute. JSP: introduction of jsp and their important tags, jsp all directives, error handling in jsp and redirect in jsp from one page to another page.	03 Hours
Module-6	HIBERNATE: introduction of hibernate and maven, hibernate using annotations @entity, @table and @i, hibernate using annotations @column, @generated Value and @temporal	03 Hours
	Total	20 Hours

Tex	Text Book:			
1	E. Alpaydin, Introduction to Machine Learning, 2nd Edition, Prentice Hall of India, 2010, <i>ISBN</i> -13: 978-8120341609			
2	Head First Java, Kathy Sierra and Bert Bates, O'REILLY, 2 nd Edition			
Ref	Reference Books:			
1	T. M. Mitchell, Machine Learning, 1st Edition, McGrow-Hill Education, 2013, <i>ISBN</i> -13. 978-1259096952			
	Kanika Lakhani, Advance JAVA Programming, 1st Edition, S.K. Kataria & Sons 2013, ISBN-978-			
2	93-5014-455-8			

CO.1	To formulate a machine learning problem.
CO.2	Select an appropriate pattern analysis tool for analyzing data in a given feature space.
CO.3	Apply pattern recognition and machine learning techniques such as classification and feature selection to practical applications and detect patterns in the data
CO.4	Understand the concepts related to Java Technology.
CO.5	Students learn to access database through Java programs, using Java Database Connectivity (JDBC).
CO.6	Create dynamic web pages, using Servlets and JSP& Develop advanced skills for programming

Type	Code	UNIVERSAL HUMAN VALUES	L-T-P	Credits	Marks
MC	BTCS-T-MC-601	UNIVERSAL HUMAN VALUES	2-0-0	0	100

Objectives	 To help the students appreciate the essential complementarity between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings. To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way. To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction with Nature.
Pre-Requisites	To help students practiced and understand the various company pattern tests.
Teaching	Regular classroom lectures with use of ICT as and when required, sessions
Pedagogy	are planned to be interactive with focus on real-life problem-solving activities.

Module-#	Topics	Hours
Module-1	Foundations of Value Education-A Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education); Understanding Value Education; Self-exploration as the Process for Value	3 Hours
Module-2	Foundations of Value Education-B Continuous Happiness and Prosperity - the Basic Human Aspiration; Happiness and Prosperity-Current Scenario; Method to Fulfill the Basic Human Aspirations.	3 Hours
Module -3	Harmony in the Human Life, Relationships and Society-A Understanding Human being as the Co-existence of the Self and the Body; Distinguishing between the Needs of the Self and the Body; Achieving Harmony: Integrating Self and the Body; Harmony in the Family and Society.	4 Hours
Module -4	Harmony in the Human Life, Relationships and Society-Trust'& 'Respect'—as Foundational Values in Relationship; Other Feelings, Justice in Human-to-Human Relationship; Understanding Harmony in the Society & Universal Human Order.	3 Hours
Module -5	Harmony in the Nature/Existence & Professional Ethics-A Understanding Harmony in the Nature; Interconnectedness, self-regulation and Mutual Fulfilment among the Four Orders of Nature; Realizing Existence as Coexistence at All Levels.	3 Hours
Module -6	Harmony in the Nature/Existence & Professional Ethics-B The Holistic Perception of Harmony in Existence; Natural Acceptance of Human Values; Humanistic Education, Humanistic Constitution and Universal Human Order; Competence in Professional Ethics – Ethical Decision Making&Transition towards Value-based Life and Profession.	4 Hours
	Total	20 Hours

Tex	Text Book		
1	A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1		
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004, ISBN 8122415660		
Reference Books			
1	Gaur. R.R., Sangal. R, Bagaria. G.P, A Foundation Course in Value Education, Excel Books, 2009, ISBN-13. 978-8174467652		
2	Small is Beautiful - E. F Schumacher, ISBN 13: 9780060803520		
3	B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008, <i>ISBN</i> -13. 978-8185936949		

CO.1	To understand and analyses the foundations of value education, essentials of human values and skills, self-exploration, happiness and prosperity.
CO.2	Understand and analyze the foundations of value education, continuous happiness, and
	prosperity and basic human aspirations.
CO.3	Identify and evaluate the role of harmony in human life, relationship and harmony in family and
	society.
CO.4	Understand and associate the holistic perception of harmony at all levels such as existence of trust and respect, justice in human to human relationship.
CO.5	Develop appropriate technologies and management patterns to create harmony in professional and personal lives, harmony in the Nature/Existence such as understanding Harmony in the Nature; Interconnectedness, self-regulation and Mutual Fulfillment.
CO.6	Develop appropriate technologies and management patterns to create harmony in professional and personal lives like Natural Acceptance of Human Values.

Type	Code	COMPUTER NETWORK LAB	L-T-P	Credits	Marks
PC	BTCS-P-PC-601	COMPUTER NETWORK LAD	0-0-2	1	100

Objectives	 Build an understanding of the fundamental concepts of computer networking. Familiarize the student with the basic taxonomy and terminology of the computer networking area. Introduce the student to advanced networking concepts, preparing the student for entry Advanced courses in computer networking.
Pre-Requisites	Fundamental computer knowledge that includes concepts of computer architecture, Concept of Network and Graphs
Teaching Scheme	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with focus on real-life problem-solving activities.

Lab No:	Name of the experiments	Hours
1	Getting started with the basics of network configuration files and networking commands in Linux.	2 Hours
2	To familiarize and understand the use and functioning of system calls used for network programming in Linux.	2 Hours
3	Implement client-server communication using socket programming and TCP as transport layer protocol	2 Hours
4	Implement client-server communication using socket programming and UDP as transport layer protocol	2 Hours
5	Study of Network topology	2 Hours
6	Crimping Tool and use on Cat 6 Cable	2 Hours
7	Network topology demonstration using Cat 6 cables and Network devices.	2 Hours
8	Implementation of Stop and Wait Protocol and Sliding Window Protocol.	2 Hours
9	Implement congestion control using a leaky bucket algorithm.*	2 Hours
10	Study of Socket Programming and Client – Server model	2 Hours
11	Study of Network simulator (NS).and Simulation of Congestion Control Algorithms using NS 2	2 Hours
12	Perform a case study about the different routing algorithms to select the network path with its optimum and economical during data transfer. i. Link State routing ii. Flooding iii. Distance vector	2 Hours

Text Books:

Computer Network Lab Manual, Department of CSE, GIFT, Bhubaneswar

CO.1	To familiarize students with the fundamentals of software testing.	
CO.2	To enable students to apply software testing techniques in real-world scenarios.	
CO.3	To develop students' skills in test planning, test case design, and test execution.	
CO.4	To introduce students to automated testing tools and frameworks.	
CO.5	To cultivate a mindset of quality assurance and continuous improvement in software development processes.	
CO.6	To familiarize students with the fundamentals of software testing.	

Type	Code	COMPILER DESIGN LAB	L-T-P	Credits	Marks
PC	BTCS-P-PC-602	COMITIER DESIGN LAD	0-0-2	1	100

Objectives	 To inculcate knowledge of parser by parsing LL parser and LR parser To demonstrate intermediate code using technique of syntax directed translation To Illustrate the various optimization techniques for designing various optimizing compilers
Pre-Requisites	Knowledge of basic computer and mathematics.
Teaching Pedagogy	Regular classroom lectures with use of ICT as and when required, sessions are planned to be interactive with different examples

Lab No:	Name of the experiments	Hours
1	Using JFLAP, create a DFA from a given regular expression. All types of	2 Hours
	error must be checked during the conversion.	
2	i) Using JFLAP Create NFA from given Expression.	2 Hours
	ii) Convert NFA to DFA	
3	Write C program to recognize strings under 'a' a*b+','abb'.	2 Hours
4	Write a C program to test whether a given identifiers valid or not.	2 Hours
5	i) Program to recognize a valid arithmetic expression that uses	2 Hours
	operator $+$, $-$, $*$ and $/$.	
	ii) Program to recognize a valid variable which starts with a letter	
	followed by any number of letters or digits.	
6	Implementation of Calculator using LEX and YACC.	2 Hours
7	Write program to find Simulate First and Follow of any given grammar	2 Hours
8	Construct a Shift Reduce Parser for a given language.	2 Hours
9	Develop an operator precedence parser for a given language	2 Hours
10	Write a program to perform loop unrolling.	2 Hours

Text Books:

Compiler Design Lab Manual, Department of CSE, GIFT, Bhubaneswar

CO1	Understand the working of lex and YACC compiler for debugging of programs.	
CO2	Understand and define the role of lexical analyzer, use of regular expression and transition diagrams.	
CO3	Understand and use Context free grammar, and parse tree construction.	
CO4	Learn & use the new tools and technologies used for designing a compiler.	
CO5	Develop program for solving parser problems.	
CO6	Learn how to write programs that execute faster	

Type			NEURAL NETWORK AND	L-T-P	Credits	Marks
PC			C BTCS-P-PC-603 MACHINE INTELLIGENCE LAB	0-0-2	1	100
		3	 To understand the basic theory underlying notes. To be able to formulate machine learning predifferent applications. To understand a range of machine learning a strengths and weaknesses. To be able to apply machine learning algorithmoderate complexity 	oblems corr	esponding to long with the	
Pre-Requisites Knowledge of mathematics and artificial intelligence basic concept.						
Pedagogy and		and a	tal face-to-face lectures Tutorials, which allow allow time for students to resolve problems in urial. Small periodic quizzes, to enable you to a	ınderstandir	ng of lecture	C
	conc		<u> </u>	•		

Lab No:	Name of the experiments	Hours
1	Write a python program to import and export data using Pandas library functions.	2 Hours
2	Demonstrate various data pre-processing techniques for a given dataset	2 Hours
3	Implement Dimensionality reduction using Principle Component Analysis (PCA) method.	2 Hours
4	Write a Python program to demonstrate various Data Visualization Techniques.	2 Hours
5	Implement Simple and Multiple Linear Regression Models.	2 Hours
6	Develop Logistic Regression Model for a given dataset	2 Hours
7	Develop Decision Tree Classification model for a given dataset and use it to classify a new sample.	2 Hours
8	Implement Naïve Bayes Classification in Python	2 Hours
9	Build KNN Classification model for a given dataset.	2 Hours
10	Build Artificial Neural Network model with back propagation on a given dataset.	2 Hours
11	a) Implement Random forest ensemble method on a given dataset.b) Implement Boosting ensemble method on a given dataset.	2 Hours
12	Write a python program to implement K-Means clustering Algorithm.	2 Hours

PYTHON Lab Manual, Department of CSE, GIFT, Bhubaneswar

CO.1	Understand the basic concept of Script language.
CO.2	Demonstrating the control statement in python
CO.3	Experiment on different datatypes in python.
CO.4	Ability to explore python especially the object-oriented concepts, and the built in objects of Python.
CO.5	Implementation of Python Modules.
CO.6	Ability to Create practical and contemporary applications on Machine learning.

Type	Code	PROJECT-IV	L-T-P	Credits	Marks
PS	BTCS-P-PS-601	TROJECT-TV	0-0-4	2	100

Objectives	The objective is to analyze the designing process of combinational and sequential circuits, express arithmetic logic and shift micro-operations, identify the addressing modes used in macro instructions, apply algorithms for arithmetic operations and implementation for ALU design.
Pre-Requisites	Knowledge of Digital Electronics Circuits
Teaching Regular classroom lectures with use of ICT as and when required, session are planned to be interactive with different examples	

To be assign by Department.

CO.1	Identify Basic Organization of Computers.
CO.2	Identify the addressing modes used in macro instructions.
CO.3	Apply algorithms for arithmetic operations and implementation for ALU design.
CO.4	Develop micro code for typical instructions in symbolic form.
CO.5	Develop the pipeline and its performance.
CO.6	Identify Characteristics of Memory System.